A Step-indexed Kripke Model of Hidden State via Recursive Properties on Recursively Defined Metric Spaces ${ }^{\star}$

Jan Schwinghammer, Lars Birkedal, and Kristian Støvring
${ }^{1}$ Saarland University
${ }^{2}$ IT University of Copenhagen
${ }^{3}$ University of Copenhagen

Abstract

Frame and anti-frame rules have been proposed as proof rules for modular reasoning about programs. Frame rules allow one to hide irrelevant parts of the state during verification, whereas the anti-frame rule allows one to hide local state from the context. We give the first sound model for Charguéraud and Pottier's type and capability system including both frame and anti-frame rules. The model is a possible worlds model based on the operational semantics and step-indexed heap relations, and the worlds are constructed as a recursively defined predicate on a recursively defined metric space. We also extend the model to account for Pottier's generalized frame and anti-frame rules, where invariants are generalized to families of invariants indexed over pre-orders. This generalization enables reasoning about some (locally) monotonic uses of local state.

1 Introduction

Reasoning about higher-order stateful programs is notoriously difficult, and often involves the need to track aliasing information. A particular line of work that addresses this point are substructural type systems with regions, capabilities and singleton types $[2,8,9]$. In this context, Pottier [13] presented the anti-frame rule as a proof rule for hiding invariants on encapsulated state: the description of a piece of mutable state that is local to a procedure can be removed from the procedure's external interface (expressed in the type system). The benefits of hiding invariants on local state include simpler interface specifications, simpler reasoning about client code, and fewer restrictions on the procedure's use because potential aliasing is reduced. Thus, in combination with frame rules that allow the irrelevant parts of the state to be hidden during verification, the anti-frame rule provides an important ingredient for modular reasoning about programs.

Essentially, the frame and anti-frame rules exploit the fact that programs cannot access non-local state directly. However, in an ML-like language with higher-order procedures and the possibility of call-backs, the dependencies on

[^0]non-local state can be complex; consequently, the soundness of frame and antiframe rules is anything but obvious.

Pottier [13] sketched a soundness proof for the anti-frame rule by a progress and preservation argument, which rests on assumptions about the existence of certain recursively defined types and capabilities. (He is currently formalizing the details in Coq.) More recently, Birkedal et al. [6] developed a step-indexed model of Charguéraud and Pottier's type and capability system with higherorder frame rules, but without the anti-frame rule. This was a Kripke model in which capabilities are viewed as assertions (on heaps) that are indexed over recursively defined worlds: intuitively, these worlds are used to represent the invariants that have been added by the frame rules.

Proving soundness of the anti-frame rule requires a refinement of this idea, as one needs to know that additional invariants do not invalidate the invariants on local state which have been hidden by the anti-frame rule. This requirement can be formulated in terms of a monotonicity condition for the world-indexed assertions, using an order on the worlds that is induced by invariant extension [17]. (The fact that ML-style untracked references can be encoded from strong references with the anti-frame rule [13] also indicates that a monotonicity condition is required: Kripke models of ML-style references involve monotonicity in the worlds $[7,1]$.) More precisely, in the presence of the anti-frame rule, it turns out that the recursive domain equation for the worlds involves monotonic functions with respect to an order relation on worlds, and that this order is specified using the isomorphism of the recursive world solution itself. This circularity means that the standard existence theorems, in particular the one used in [6], cannot be applied to define the worlds. Thus Schwinghammer et al. [17], who considered a separation logic variant of the anti-frame rule for a simple language (without higher-order functions, and untyped), had to give the solution to a similar recursive domain equation by a laborious inverse-limit construction.

In the present paper we develop a new model of Charguéraud and Pottier's system, which can also be used to show soundness of the anti-frame rule. Moreover, we show how to extend our model to show soundness of Pottier's generalized frame and anti-frame rules, which allow hiding of families of invariants [14]. The new model is a non-trivial extension of the earlier work because, as pointed out above, the anti-frame rule is the "source" of a circular monotonicity requirement.

Our approach can loosely be described as a metric space analogue of Pitts' approach to relational properties of domains [12] and thus consists of two steps. First, we consider a recursive metric space domain equation without any monotonicity requirement, for which we obtain a solution by appealing to a standard existence theorem. Second, we carve out a suitable subset of what might be called hereditarily monotonic functions. We show how to define this recursively specified subset as a fixed point of a suitable operator. The resulting subset of monotonic functions is, however, not a solution to the original recursive domain equation; hence we verify that the semantic constructions used to justify the anti-frame rule in [17] suitably restrict to the recursively defined subset of hereditarily monotonic functions. This results in a considerably simpler model
construction than the earlier one in loc. cit. We show that our approach scales by extending the model to also allow for hiding of families of invariants, and using it to prove the soundness of Pottier's generalized frame and anti-frame rules [14].

Contributions. In summary, the contributions of this paper are (1) the development of a considerably simpler model of recursive worlds for showing the soundness of the anti-frame rule; (2) the use of this model to give the first soundness proof of the anti-frame rule in the expressive type and capability system of Charguéraud and Pottier; and (3) the extension of the model to include hiding of families of invariants, and showing the soundness of generalized frame and antiframe rules. Moreover, at a conceptual level, we augment our earlier approach to constructing (step-indexed) recursive possible worlds based on a programming language's operational semantics via metric spaces [6] by a further tool, viz., defining worlds as recursive subsets of recursive metric spaces.

Outline. In the next section we give a brief overview of Charguéraud and Pottier's type and capability system $[8,13]$ with higher-order frame and antiframe rules. Section 3 summarizes some background on ultrametric spaces and presents the construction of a set of hereditarily monotonic recursive worlds. The worlds thus constructed are then used (Section 4) to give a model of the type and capability system. Finally, in Section 5 we show how to extend the model to also prove soundness of the generalized frame and anti-frame rules.

For space reasons, many details are relegated to a technical appendix.

2 A Calculus of Capabilities

Syntax and operational semantics. We consider a standard call-by-value, higher-order language with general references, sum and product types, and polymorphic and recursive types. For concreteness, the following grammar gives the syntax of values and expressions, keeping close to the notation of $[8,13]$:

$$
\begin{aligned}
& v::=x|()| \operatorname{inj}^{i} v\left|\left(v_{1}, v_{2}\right)\right| \text { fun } f(x)=t \mid l \\
& t::=v|(v t)| \operatorname{case}\left(v_{1}, v_{2}, v\right)\left|\operatorname{proj}^{i} v\right| \operatorname{ref} v \mid \text { get } v \mid \text { set } v
\end{aligned}
$$

Here, the term fun $f(x)=t$ stands for the recursive procedure f with body t, and locations l range over a countably infinite set Loc. The operational semantics is given by a relation $(t \mid h) \longmapsto\left(t^{\prime} \mid h^{\prime}\right)$ between configurations that consist of a (closed) expression t and a heap h. We take a heap h to be a finite map from locations to closed values, we use the notation $h \# h^{\prime}$ to indicate that two heaps h, h^{\prime} have disjoint domains, and we write $h \cdot h^{\prime}$ for the union of two such heaps. By Val we denote the set of closed values.

Types. Charguéraud and Pottier's type system uses capabilities, value types, and memory types, as summarized in Figure 1. A capability C describes a heap property, much like the assertions of a Hoare-style program logic. For instance,

Variables	$\xi::=\alpha\|\beta\| \gamma \mid \sigma$
Capabilities	$C::=C \otimes C\|\emptyset\| C * C\|\{\sigma: \theta\}\| \exists \sigma . C\|\gamma\| \mu \gamma . C \mid \forall \xi . C$
Value types	$\tau::=\tau \otimes C\|0\| 1\|\mathrm{int}\| \tau+\tau\|\tau \times \tau\| \chi \rightarrow \chi\|[\sigma]\| \alpha\|\mu \alpha . \tau\| \forall \xi . \tau$
Memory types	$\theta::=\theta \otimes C\|\tau\| \theta+\theta\|\theta \times \theta\| \operatorname{ref} \theta\|\theta * C\| \exists \sigma . \theta\|\beta\| \mu \beta . \theta \mid \forall \xi . \theta$
Computation types	$\chi::=\chi \otimes C\|\tau\| \chi * C \mid \exists \sigma . \chi$
Value contexts	$\Delta::=\Delta \otimes C\|\varnothing\| \Delta, x: \tau$
Linear contexts	$\Gamma::=\Gamma \otimes C\|\varnothing\| \Gamma, x: \chi \mid \Gamma * C$

Fig. 1. Capabilities and types
$\{\sigma:$ ref int $\}$ asserts that σ is a valid location that contains an integer value. More complex assertions can be built by separating conjunctions $C_{1} * C_{2}$ and universal and existential quantification over names σ. Value types τ classify values; they include base types, singleton types $[\sigma]$, and are closed under products, sums, and universal quantification. Memory types (and the subset of computation types χ) describe the result of computations. They extend the value types by a type of references, and also include all types of the form $\exists \vec{\sigma} . \tau * C$ which describe both the value and heap that result from the evaluation of an expression. Arrow types (which are value types) have the form $\chi_{1} \rightarrow \chi_{2}$ and thus, like the pre- and postconditions of a triple in Hoare logic, make explicit which part of the heap is accessed and modified by a procedure call. We allow recursive capabilities, value types, and memory types, resp., provided the recursive definition is formally contractive, i.e., the recursion must go through a type constructor such as \rightarrow.

Since Charguéraud and Pottier's system tracks aliasing, so-called strong (i.e., non-type preserving) updates are permitted: a possible type for such an update operation is $\forall \sigma, \sigma^{\prime} .\left([\sigma] \times\left[\sigma^{\prime}\right]\right) *\{\sigma: \operatorname{ref} \tau\} \rightarrow \mathbf{1} *\left\{\sigma: \operatorname{ref}\left[\sigma^{\prime}\right]\right\}$. Here, the argument to the procedure is a pair consisting of a location (named σ) and the value to be stored (named σ^{\prime}), and the location is assumed to be allocated in the initial heap (and store a value of some type τ). The result of the procedure is unit, but as a side-effect σ^{\prime} will be stored at the location σ.

Frame and anti-frame rules. Each of the syntactic categories is equipped with an invariant extension operation, $\cdot \otimes C$. Intuitively, this operation conjoins C to the domain and codomain of every arrow type that occurs within its left hand argument, which means that the capability C is preserved by all procedures of this type. This intuition is made precise by regarding capabilities and types modulo a structural equivalence which subsumes the "distribution axioms" for \otimes that are used to express generic higher-order frame rules [5]. The two key cases of the structural equivalence are the distribution axioms for arrow types, $\left(\chi_{1} \rightarrow \chi_{2}\right) \otimes C=\left(\chi_{1} \otimes C * C\right) \rightarrow\left(\chi_{2} \otimes C * C\right)$, and for successive extensions, $\left(\chi \otimes C_{1}\right) \otimes C_{2}=\chi \otimes\left(C_{1} \circ C_{2}\right)$ where the derived operation $C_{1} \circ C_{2}$ abbreviates the conjunction $\left(C_{1} \otimes C_{2}\right) * C_{2}$.

There are two typing judgements, $x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n} \vdash v: \tau$ for values, and $x_{1}: \chi_{1}, \ldots, x_{n}: \chi_{n} \Vdash t: \chi$ for expressions. The latter is similar to a Hoare triple
where (the separating conjunction of) $\chi_{1}, \ldots, \chi_{n}$ serves as a precondition and χ as a postcondition. This view provides some intuition for the following "shallow" and "deep" frame rules, and for the (essentially dual) anti-frame rule:

$$
\begin{gather*}
{[S F] \frac{\Gamma \Vdash t: \chi}{\Gamma * C \Vdash t: \chi * C} \quad[D F] \frac{\Gamma \Vdash t: \chi}{(\Gamma \otimes C) * C \Vdash t:(\chi \otimes C) * C}} \tag{1}\\
{[A F] \frac{\Gamma \otimes C \Vdash t:(\chi \otimes C) * C}{\Gamma \Vdash t: \chi}}
\end{gather*}
$$

As in separation logic, the frame rules can be used to add a capability C (which might assert the existence of an integer reference, say) as an invariant to a specification $\Gamma \Vdash t: \chi$, which is useful for local reasoning. The difference between the shallow variant $[S F]$ and the deep variant $[D F]$ is that the former adds C only on the top-level, whereas the latter also extends all arrow types nested inside Γ and χ, via $\cdot \otimes C$. While the frame rules can be used to reason about certain forms of information hiding [5], the anti-frame rule expresses a hiding principle more directly: the capability C can be removed from the specification if C is an invariant that is established by t, expressed by $\cdot * C$, and that is guaranteed to hold whenever control passes from t to the context and back, expressed by $\cdot \otimes C$.

Pottier [13] illustrates the anti-frame rule by a number of applications. One of these is a fixed-point combinator implemented by means of "Landin's knot", i.e., recursion through heap. Every time the combinator is called with a functional $f:\left(\chi_{1} \rightarrow \chi_{2}\right) \rightarrow\left(\chi_{1} \rightarrow \chi_{2}\right)$, a new reference cell σ is allocated in order to set up the recursion required for the resulting fixed point fixf. Subsequent calls to fix f still rely on this cell, and in Charguéraud and Pottier's system this is reflected in the type $\left(\chi_{1} \rightarrow \chi_{2}\right) \otimes I$ of fix f, where the capability $I=\left\{\sigma:\right.$ ref $\left.\left(\chi_{1} \rightarrow \chi_{2}\right) \otimes I\right\}$ describes the cell σ after it has been initialized. However, the anti-frame rule allows one to hide the existence of σ, and leads to a purely functional interface of the fixed point combinator. In particular, after hiding I, fix f has the much simpler type $\left(\chi_{1} \rightarrow \chi_{2}\right)$, which means that we can reason about aliasing and type safety of programs that use the fixed-point combinator without considering the reference cells used internally by that combinator.

3 Hereditarily Monotonic Recursive Worlds

Intuitively, capabilities describe heaps. A key idea of the model that we present next is that capabilities (as well as types and type contexts) are parameterized by invariants - this will make it easy to interpret the invariant extension operation \otimes, as in $[15,17]$. That is, rather than interpreting a capability C directly as a set of heaps, we interpret it as a function $\llbracket C \rrbracket: W \rightarrow \operatorname{Pred}(H e a p)$ that maps "invariants" from W to sets of heaps. Intuitively, invariant extension of C is then interpreted by applying $\llbracket C \rrbracket$ to the given invariant. In contrast, a simple interpretation of C as a set of heaps would not contain enough information to determine the meaning of every invariant extension of C.

The question is now what the set W of invariants should be. As the frame and anti-frame rules in (1) indicate, invariants are in fact arbitrary capabilities, so W should be the set used to interpret capabilities. But, as we just saw, capabilities should be interpreted as functions from W to $\operatorname{Pred}($ Heap $)$. Thus, we are led to consider a Kripke model where the worlds are recursively defined: to a first approximation, we need a solution to the equation

$$
\begin{equation*}
W=W \rightarrow \operatorname{Pred}(\text { Heap }) \tag{2}
\end{equation*}
$$

In fact, we will also need to consider a preorder on W and ensure that the interpretation of capabilities and types is monotonic. We will find a solution to a suitable variant of (2) using ultrametric spaces.

Ultrametric spaces. We recall some basic definitions and results about ultrametric spaces; for a less condensed introduction to ultrametric spaces we refer to [18]. A 1-bounded ultrametric space (X, d) is a metric space where the distance function $d: X \times X \rightarrow \mathbb{R}$ takes values in the closed interval $[0,1]$ and satisfies the "strong" triangle inequality $d(x, y) \leq \max \{d(x, z), d(z, y)\}$. A metric space is complete if every Cauchy sequence has a limit. A function $f: X_{1} \rightarrow X_{2}$ between metric spaces $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$ is non-expansive if $d_{2}(f(x), f(y)) \leq d_{1}(x, y)$ for all $x, y \in X_{1}$. It is contractive if there exists some $\delta<1$ such that $d_{2}(f(x), f(y)) \leq \delta \cdot d_{1}(x, y)$ for all $x, y \in X_{1}$. By the Banach fixed point theorem, every contractive function $f: X \rightarrow X$ on a complete and non-empty metric space (X, d) has a (unique) fixed point. By multiplication of the distances of (X, d) with a non-negative factor $\delta<1$, one obtains a new ultrametric space, $\delta \cdot(X, d)=\left(X, d^{\prime}\right)$ where $d^{\prime}(x, y)=\delta \cdot d(x, y)$.

The complete, 1-bounded, non-empty, ultrametric spaces and non-expansive functions between them form a Cartesian closed category $C B U l t_{n e}$. Products are given by the set-theoretic product where the distance is the maximum of the componentwise distances. The exponential $\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ has the set of non-expansive functions from $\left(X_{1}, d_{1}\right)$ to $\left(X_{2}, d_{2}\right)$ as underlying set, and the distance function is given by $d_{X_{1} \rightarrow X_{2}}(f, g)=\sup \left\{d_{2}(f(x), g(x)) \mid x \in X_{1}\right\}$.

The notation $x \stackrel{n}{=} y$ means that $d(x, y) \leq 2^{-n}$. Each relation \xlongequal{n} is an equivalence relation because of the ultrametric inequality; we refer to this relation as " n-equality." Since the distances are bounded by $1, x \stackrel{0}{=} y$ always holds, and the n-equalities become finer as n increases. If $x \stackrel{n}{=} y$ holds for all n then $x=y$.

Uniform predicates, worlds and world extension. Let (A, \sqsubseteq) be a partially ordered set. An upwards closed, uniform predicate on A is a subset $p \subseteq \mathbb{N} \times A$ that is downwards closed in the first and upwards closed in the second component: if $(k, a) \in p, j \leq k$ and $a \sqsubseteq b$, then $(j, b) \in p$. We write $\operatorname{UPred}(A)$ for the set of all such predicates on A, and we define $p_{[k]}=\{(j, a) \mid j<k\}$. Note that $p_{[k]} \in \operatorname{UPred}(A)$. We equip $\operatorname{UPred}(A)$ with the distance function $d(p, q)=$ $\inf \left\{2^{-n} \mid p_{[n]}=q_{[n]}\right\}$, which makes $(\operatorname{UPred}(A), d)$ an object of $C B U l t_{n e}$.

In our model, we use $\operatorname{UPred}(A)$ with the following concrete instances for

some $h_{0} \# h$, (2) values (Val, $\left.\sqsubseteq\right)$, where $u \sqsubseteq v$ iff $u=v$, and (3) stateful values (Val \times Heap,\sqsubseteq), where $(u, h) \sqsubseteq\left(v, h^{\prime}\right)$ iff $u=v$ and $h \sqsubseteq h^{\prime}$. We also use variants of the latter two instances where the set $V a l$ is replaced by the set of value substitutions, Env, and by the set of closed expressions, Exp. On UPred (Heap), ordered by subset inclusion, we have a complete Heyting BI algebra structure [4]. Below we only need the separating conjunction and its unit I, given by

$$
p_{1} * p_{2}=\left\{(k, h) \mid \exists h_{1}, h_{2} \cdot h=h_{1} \cdot h_{2} \wedge\left(k, h_{1}\right) \in p_{1} \wedge\left(k, h_{2}\right) \in p_{2}\right\}
$$

and $I=\mathbb{N} \times$ Heap. Still, this observation on UPred (Heap) suggests that Pottier and Charguéraud's system could be extended to a full-blown program logic.

It is well-known that one can solve recursive domain equations in $C B U l t_{n e}$ by an adaptation of the inverse-limit method from classical domain theory [3]. In particular, with regard to the domain equation (2) above:

Theorem 1. There exists a unique (up to isomorphism) $(X, d) \in$ CBUlt $_{n e}$ such that $\iota: \frac{1}{2} \cdot X \rightarrow \operatorname{UPred}($ Heap $) \cong X$.

Using the pointwise lifting of separating conjunction to $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}($ Heap $)$ we define a composition operation on X, which reflects the syntactic abbreviation $C_{1} \circ C_{2}=C_{1} \otimes C_{2} * C_{2}$ of conjoining C_{1} and C_{2} and additionally applying an invariant extension to C_{1}. Formally, $\circ: X \times X \rightarrow X$ is a non-expansive operation that for all $p, q, x \in X$ satisfies

$$
\iota^{-1}(p \circ q)(x)=\iota^{-1}(p)(q \circ x) * \iota^{-1}(q)(x)
$$

and which can be defined by an easy application of Banach's fixed point theorem as in [15]. One can show that this operation is associative and has a left and right unit given by emp $=\iota(\lambda w \cdot I)$; thus $(X, \circ, e m p)$ is a monoid in $C_{B U l t_{n e}}$.

Then, using \circ we define an extension operation $\otimes: Y^{(1 / 2 \cdot X)} \times X \rightarrow Y^{(1 / 2 \cdot X)}$ for any $Y \in C B U l t_{n e}$ by $(f \otimes x)\left(x^{\prime}\right)=f\left(x \circ x^{\prime}\right)$. Not going into details here, let us remark that \otimes is the semantic counterpart to the syntactic invariant extension, and thus plays a key role in the model. However, for Pottier's anti-frame rule we also need to ensure that specifications are not invalidated by invariant extension. This requirement is stated via monotonicity, as we discuss next.

Relations on ultrametric spaces and hereditarily monotonic worlds. As a conseqence of the fact that o defines a monoid structure on X there is an induced preorder on $X: x \sqsubseteq y \Leftrightarrow \exists x_{0} . y=x \circ x_{0}$.

For modelling the anti-frame rule, we aim for a set of worlds similar to $X \cong 1 / 2 \cdot X \rightarrow U P r e d(H e a p)$ but where the function space consists of the non-expansive functions that are additionally monotonic, with respect to the order induced by \circ on X and with respect to set inclusion on $\operatorname{UPred}($ Heap $)$:

$$
\begin{equation*}
(W, \sqsubseteq) \cong \frac{1}{2} \cdot(W, \sqsubseteq) \rightarrow_{\operatorname{mon}}(\operatorname{UPred}(\text { Heap }), \subseteq) \tag{3}
\end{equation*}
$$

Because the definition of the order \sqsubseteq (induced by o) already uses the isomorphism between left-hand and right-hand side, and because the right-hand side
depends on the order for the monotonic function space, the standard existence theorems for solutions of recursive domain equations do not appear to apply to (3). Previously we have constructed a solution to this equation explicitly as inverse limit of a suitable chain of approximations [17]. We show in the following that we can alternatively carve out from X a suitable subset of what we call hereditarily monotonic functions. This subset needs to be defined recursively.

Let \mathcal{R} be the collection of all non-empty and closed relations $R \subseteq X$. We set

$$
R_{[n]} \stackrel{\text { def }}{=}\{y \mid \exists x \in X . x \stackrel{n}{=} y \wedge x \in R\} .
$$

for $R \in \mathcal{R}$. Thus, $R_{[n]}$ is the set of all points within distance 2^{-n} of R. Note that $R_{[n]} \in \mathcal{R}$. In fact, $\emptyset \neq R \subseteq R_{[n]}$ holds by the reflexivity of n-equality, and if $\left(y_{k}\right)_{k \in \mathbb{N}}$ is a sequence in $R_{[n]}$ with limit y in X then $d\left(y_{k}, y\right) \leq 2^{-n}$ must hold for some k, i.e., $y_{k} \stackrel{n}{\underline{n}} y$. So there exists $x \in X$ with $x \in R$ and $x \stackrel{n}{=} y_{k}$, and hence by transitivity $x \stackrel{n}{=} y$ which then gives $\lim _{n} y_{n} \in R_{[n]}$.

We make some further observations that follow from the properties of n equality on X. First, $R \subseteq S$ implies $R_{[n]} \subseteq S_{[n]}$ for any $R, S \in \mathcal{R}$. Moreover, using the fact that the n-equalities become increasingly finer it follows that $\left(R_{[m]}\right)_{[n]}=R_{[\min (m, n)]}$ for all $m, n \in \mathbb{N}$, so in particular each $(\cdot)_{[n]}$ is a closure operation on \mathcal{R}. As a consequence, we have $R \subseteq \ldots \subseteq R_{[n]} \subseteq \ldots \subseteq R_{[1]} \subseteq R_{[0]}$. By the 1-boundedness of $X, R_{[0]}=X$ for all $R \in \mathcal{R}$. Finally, $R=S$ if and only if $R_{[n]}=S_{[n]}$ for all $n \in \mathbb{N}$.

Proposition 2. Let $d: \mathcal{R} \times \mathcal{R} \rightarrow \mathbb{R}$ be defined by $d(R, S)=\inf \left\{2^{-n} \mid R_{[n]}=\right.$ $\left.S_{[n]}\right\}$. Then (\mathcal{R}, d) is a complete, 1-bounded, non-empty ultrametric space. The limit of a Cauchy chain $\left(R_{n}\right)_{n \in \mathbb{N}}$ with $d\left(R_{n}, R_{n+1}\right) \leq 2^{-n}$ is given by $\bigcap_{n}\left(R_{n}\right)_{[n]}$, and in particular $R=\bigcap_{n} R_{[n]}$ for any $R \in \mathcal{R}$.

We will now define the set of hereditarily monotonic functions W as a recursive predicate on the space X. Let the function $\Phi: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ on subsets of X be given by $\Phi(R)=\left\{\iota(p) \mid \forall x, x_{0} \in R . p(x) \subseteq p\left(x \circ x_{0}\right)\right\}$.
Lemma 3. Φ restricts to a contractive function on \mathcal{R} : if $R \in \mathcal{R}$ then $\Phi(R)$ is non-empty and closed, and $R \stackrel{n}{=} S$ implies $\Phi(R) \stackrel{n+1}{=} \Phi(S)$.

While the proof of this lemma is not particularly difficult, we include it here to illustrate the kind of reasoning that is involved.

Proof. It is clear that $\Phi(R) \neq \emptyset$ since $\iota(p) \in \Phi(R)$ for every constant function p from $\frac{1}{2} \cdot X$ to UPred (Heap). Limits of Cauchy chains in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}($ Heap $)$ are given pointwise, hence $\left(\lim _{n} p_{n}\right)(x) \subseteq\left(\lim _{n} p_{n}\right)\left(x \circ x_{0}\right)$ holds for all Cauchy chains $\left(p_{n}\right)_{n \in \mathbb{N}}$ in $\Phi(R)$ and all $x, x_{0} \in R$. This proves $\Phi(R) \in \mathcal{R}$.

We now show that Φ is contractive. To this end, let $n \geq 0$ and assume $R \stackrel{n}{=} S$. Let $\iota(p) \in \Phi(R)_{[n+1]}$. We must show that $\iota(p) \in \Phi(S)_{[n+1]}$. By definition of the closure operation there exists $\iota(q) \in \Phi(R)$ such that p and q are $(n+1)$-equal. Set $r(w)=q(w)_{[n+1]}$. Then r and p are also $(n+1)$-equal, hence it suffices to show that $\iota(r) \in \Phi(S)$. To establish the latter, let $w_{0}, w_{1} \in S$ be arbitrary. By
the assumption that R and S are n-equal there exist elements $w_{0}^{\prime}, w_{1}^{\prime} \in R$ such that $w_{0}^{\prime} \stackrel{n}{=} w_{0}$ and $w_{1}^{\prime} \stackrel{n}{=} w_{1}$ in holds X, or equivalently, such that w_{0}^{\prime} and w_{0} as well as w_{1}^{\prime} and w_{1} are $(n+1)$-equal in $\frac{1}{2} \cdot X$. By the non-expansiveness of \circ, this implies that also $w_{0}^{\prime} \circ w_{1}^{\prime}$ and $w_{0} \circ w_{1}$ are $(n+1)$-equal in $\frac{1}{2} \cdot X$. Since

$$
q\left(w_{0}\right) \stackrel{n+1}{=} q\left(w_{0}^{\prime}\right) \subseteq q\left(w_{0}^{\prime} \circ w_{1}^{\prime}\right) \stackrel{n+1}{=} q\left(w_{0} \circ w_{1}\right)
$$

holds by the non-expansiveness of q and the assumption that $\iota(q) \in \Phi(R)$, we obtain the required inclusion $r\left(w_{0}\right) \subseteq r\left(w_{0} \circ w_{1}\right)$ by definition of r.

By Proposition 2 and the Banach theorem we can now define the hereditarily monotonic functions W as the uniquely determined fixed point of Φ, for which

$$
w \in W \Leftrightarrow \exists p . w=\iota(p) \wedge \forall w, w_{0} \in W . p(w) \subseteq p\left(w \circ w_{0}\right) .
$$

Note that W thus constructed does not quite satisfy (3). We do not have an isomorphism between W and the non-expansive and monotonic functions from W (viewed as an ultrametric space itself), but rather between W and all functions from X that restrict to monotonic functions whenever applied to hereditarily monotonic arguments. Keeping this in mind, we abuse notation and write

$$
\begin{aligned}
& \frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(A) \\
& \stackrel{\text { def }}{=}\left\{p: \left.\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(A) \right\rvert\, \forall w_{1}, w_{2} \in W \cdot p\left(w_{1}\right) \subseteq p\left(w_{1} \circ w_{2}\right)\right\} .
\end{aligned}
$$

Then, for our particular application of interest, we also have to ensure that all the operations restrict appropriately ($c f$. Section 4 below). Here, as a first step, we show that the composition operation o restricts to W. In turn, this means that the \otimes operator restricts accordingly: if $w \in W$ and p is in $\frac{1}{2} \cdot W \rightarrow_{\operatorname{mon}} \operatorname{UPred}(A)$ then so is $p \otimes w$.
Lemma 4. For all $n \in \mathbb{N}$, if $w_{1}, w_{2} \in W$ then $w_{1} \circ w_{2} \in W_{[n]}$. In particular, since $W=\bigcap_{n} W_{[n]}$ it follows that $w_{1}, w_{2} \in W$ implies $w_{1} \circ w_{2} \in W$.
Proof. The proof is by induction on n. The base case is immediate as $W_{[0]}=X$. Now suppose $n>0$ and let $w_{1}, w_{2} \in W$; we must prove that $w_{1} \circ w_{2} \in W_{[n]}$. Let w_{1}^{\prime} be such that $\iota^{-1}\left(w_{1}^{\prime}\right)(w)=\iota^{-1}\left(w_{1}\right)(w)_{[n]}$. Observe that $w_{1}^{\prime} \in W$, that w_{1}^{\prime} and w_{1} are n-equal, and that w_{1}^{\prime} is such that n-equality of w, w^{\prime} in $\frac{1}{2} \cdot X$ already implies $\iota^{-1}\left(w_{1}^{\prime}\right)(w)=\iota^{-1}\left(w_{1}^{\prime}\right)\left(w^{\prime}\right)$. Since w_{1}^{\prime} and w_{1} are n-equivalent, the non-expansiveness of the composition operation implies $w_{1} \circ w_{2} \stackrel{n}{=} w_{1}^{\prime} \circ w_{2}$. Thus it suffices to show that $w_{1}^{\prime} \circ w_{2} \in W=\Phi(W)$. To see this, let $w, w_{0} \in W$ be arbitrary, and note that by induction hypothesis we have $w_{2} \circ w \in W_{[n-1]}$. This means that there exists $w^{\prime} \in W$ such that $w^{\prime} \stackrel{n}{=} w_{2} \circ w$ holds in $\frac{1}{2} \cdot X$, hence

$$
\begin{aligned}
\iota^{-1}\left(w_{1}^{\prime} \circ w_{2}\right)(w) & =\iota^{-1}\left(w_{1}^{\prime}\right)\left(w_{2} \circ w\right) * \iota^{-1}\left(w_{2}\right)(w) & & \text { by definition of } \circ \\
& =\iota^{-1}\left(w_{1}^{\prime}\right)\left(w^{\prime}\right) * \iota^{-1}\left(w_{2}\right)(w) & & \text { by } w^{\prime} \stackrel{n}{=} w_{2} \circ w \\
& \subseteq \iota^{-1}\left(w_{1}^{\prime}\right)\left(w^{\prime} \circ w_{0}\right) * \iota^{-1}\left(w_{2}\right)\left(w \circ w_{0}\right) & & \text { by hereditariness } \\
& =\iota^{-1}\left(w_{1}^{\prime}\right)\left(\left(w_{2} \circ w\right) \circ w_{0}\right) * \iota^{-1}\left(w_{2}\right)\left(w \circ w_{0}\right) & & \text { by } w^{\prime} \stackrel{n}{=} w_{2} \circ w \\
& =\iota^{-1}\left(w_{1}^{\prime} \circ w_{2}\right)\left(w \circ w_{0}\right) & & \text { by definition of } \circ .
\end{aligned}
$$

Since w, w_{0} were chosen arbitrarily, this calculation establishes $w_{1}^{\prime} \circ w_{2} \in W$.

4 Step-indexed Possible World Semantics of Capabilities

We define semantic domains for the capabilities and types of the calculus described in Section 2,

$$
\begin{aligned}
\text { Cap } & =\frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(\text { Heap }) \\
V T & =\frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(\text { Val }) \\
M T & =\frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(\text { Val } \times \text { Heap }),
\end{aligned}
$$

so that $p \in C a p$ if and only if $\iota(p) \in W$. Next, we define operations on the semantic domains that correspond to the syntactic type and capability constructors. The most interesting of these is the one for arrow types. Given $T_{1}, T_{2} \in 1 / 2 \cdot X \rightarrow$ $\operatorname{UPred}($ Val \times Heap $), T_{1} \rightarrow T_{2}$ in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}($ Val $)$ is defined on $x \in X$ as

$$
\begin{align*}
& \{(k, \text { fun } f(y)=t) \mid \forall j<k . \forall w \in W . \forall r \in \operatorname{UPred}(\text { Heap }) . \\
& \forall(j,(v, h)) \in T_{1}(x \circ w) * \iota^{-1}(x \circ w)(e m p) * r . \tag{4}\\
& \left.\quad(j,(t[f:=\text { fun } f(y)=t, y:=v], h)) \in \mathcal{E}\left(T_{2} * r\right)(x \circ w)\right\},
\end{align*}
$$

where $\mathcal{E}(T)$ is the extension of a world-indexed, uniform predicate on Val \times Heap to one on $\operatorname{Exp} \times$ Heap. It is here where the index is linked to the operational semantics: $(k,(t, h)) \in \mathcal{E}(T)(x)$ if and only if for all $j \leq k, t^{\prime}, h^{\prime}$,

$$
\begin{aligned}
(t \mid h) \longmapsto^{j}\left(t^{\prime} \mid h^{\prime}\right) & \wedge\left(t^{\prime} \mid h^{\prime}\right) \text { irreducible } \\
& \Rightarrow\left(k-j,\left(t^{\prime}, h^{\prime}\right)\right) \in \bigcup_{w^{\prime} \in W} T\left(x \circ w^{\prime}\right) * \iota^{-1}\left(x \circ w^{\prime}\right)(e m p) .
\end{aligned}
$$

Definition (4) realizes the key ideas of our model as follows. First, the universal quantification over $w \in W$ and subsequent use of the world $x \circ w$ builds in monotonicity, and intuitively means that $T_{1} \rightarrow T_{2}$ is parametric in (and hence preserves) invariants that have been added by the procedure's context. In particular, (4) states that procedure application preserves this invariant, when viewed as the predicate $\iota^{-1}(x \circ w)(e m p)$. By also conjoining r as an invariant we "bake in" the first-order frame property, which results in a subtyping axiom $T_{1} \rightarrow T_{2} \leq T_{1} * C \rightarrow T_{2} * C$ in the type system. The existential quantification over w^{\prime}, in the definition of \mathcal{E}, allows us to "absorb" a part of the local heap description into the world. Finally, the quantification over indices $j<k$ in (4) achieves that $\left(T_{1} \rightarrow T_{2}\right)(x)$ is uniform. There are three reasons why we require that j be strictly less than k. Technically, the use of $\iota^{-1}(x \circ w)$ in the definition "undoes" the scaling by $1 / 2$, and $j<k$ is needed to ensure the non-expansiveness of $T_{1} \rightarrow T_{2}$ as a function $1 / 2 \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val})$. Moreover, it lets us prove the typing rule for recursive functions by induction on k. Finally, it means that \rightarrow is a contractive type constructor, which justifies the formal contractiveness assumption about arrow types that we made earlier. Intuitively, the use of $j<k$ for the arguments suffices since application consumes a step.

The function type constructor, as well as all the other type and capability constructors, restrict to Cap, $V T$ and $M T$, respectively. With their help it becomes straightforward to define the interpretation of capabilities and types, and
to verify that the type equivalences hold with respect to this interpretation. We state this for the case of arrow types:
Lemma 5. Let T_{1}, T_{2} non-expansive functions from $\frac{1}{2} \cdot X$ to UPred (Val \times Heap).

1. $T_{1} \rightarrow T_{2}$ is non-expansive, and $\left(T_{1} \rightarrow T_{2}\right)(x)$ is uniform for all $x \in X$.
2. $T_{1} \rightarrow T_{2} \in V T$.
3. The assignment of $T_{1} \rightarrow T_{2}$ to T_{1}, T_{2} is contractive.
4. Let $c \in$ Cap and $w \stackrel{\text { def }}{=} \iota(c)$. Then $\left(T_{1} \rightarrow T_{2}\right) \otimes w=\left(T_{1} \otimes w * c\right) \rightarrow\left(T_{2} \otimes w * c\right)$.

Recall that there are two kinds of typing judgments, one for typing of values and the other for the typing of expressions. The semantics of a value judgement simply establishes truth with respect to all worlds w, environments η, and $k \in \mathbb{N}$:

$$
\vDash(\Delta \vdash v: \tau) \stackrel{\text { def }}{\Longleftrightarrow} \forall \eta . \forall w \in W . \forall k \in \mathbb{N} . \forall(k, \rho) \in \llbracket \Delta \rrbracket_{\eta} w .(k, \rho(v)) \in \llbracket \tau \rrbracket_{\eta} w .
$$

Here $\rho(v)$ means the application of the substitution ρ to v. The judgement for expressions mirrors the interpretation of the arrow case for value types, in that there is also a quantification over heap predicates $r \in \operatorname{UPred}($ Heap $)$ and an existential quantification over $w^{\prime} \in W$ through the use of \mathcal{E} :

$$
\begin{aligned}
\vDash(& \Gamma \Vdash t: \chi) \stackrel{\text { def }}{\Longleftrightarrow} \forall \eta . \forall w \in W . \forall k \in \mathbb{N} . \forall r \in \operatorname{UPred}(\text { Heap }) . \\
& \forall(k,(\rho, h)) \in \llbracket \Gamma \rrbracket_{\eta} w * \iota^{-1}(w)(e m p) * r .(k,(\rho(t), h)) \in \mathcal{E}\left(\llbracket \chi \rrbracket_{\eta} * r\right)(w) .
\end{aligned}
$$

Theorem 6 (Soundness). If $\Delta \vdash v: \tau$ then $\vDash(\Delta \vdash v: \tau)$, and if $\Gamma \Vdash t: \chi$ then $\vDash(\Gamma \Vdash t: \chi)$.

To prove the theorem, we show that each typing rule preserves the truth of judgements. Detailed proofs for the shallow and deep frame rules are included in the appendix. Here, we consider the anti-frame rule. Its proof employs so-called commutative pairs $[13,17]$, a property expressed by the following lemma.

Lemma 7. For all worlds $w_{0}, w_{1} \in W$, there exist $w_{0}^{\prime}, w_{1}^{\prime} \in W$ such that

$$
w_{0}^{\prime}=\iota\left(\iota^{-1}\left(w_{0}\right) \otimes w_{1}^{\prime}\right), \quad w_{1}^{\prime}=\iota\left(\iota^{-1}\left(w_{1}\right) \otimes w_{0}^{\prime}\right), \quad \text { and } \quad w_{0} \circ w_{1}^{\prime}=w_{1} \circ w_{0}^{\prime}
$$

Proof. The proof is along the lines of [17, Sect. 4]. Specifically, $w_{0}^{\prime}, w_{1}^{\prime}$ are obtained as fixed point of a contractive function F on $X \times X$, sending $\left(x, x^{\prime}\right)$ to $\left(\iota\left(\iota^{-1}\left(w_{0}\right) \otimes x^{\prime}\right), \iota\left(\iota^{-1}\left(w_{1}\right) \otimes x\right)\right)$. In addition, since W is a non-empty and closed subset of X and o restricts to W by Lemma 4 , this fixed point is in W.

Lemma 8 (Soundness of the anti-frame rule). Suppose $\models(\Gamma \otimes C \Vdash t$: $\chi \otimes C * C)$. Then $\models(\Gamma \Vdash t: \chi)$.

Proof. We prove $\models(\Gamma \Vdash t: \chi)$. Let $w \in W, k \in \mathbb{N}, r \in U P r e d(H e a p)$ and

$$
(k,(\rho, h)) \in \llbracket \Gamma \rrbracket(w) * \iota^{-1}(w)(e m p) * r .
$$

We must prove $(k,(\rho(t), h)) \in \mathcal{E}(\llbracket \chi \rrbracket * r)(w)$. By Lemma 7,

$$
\begin{equation*}
w_{1}=\iota\left(\iota^{-1}(w) \otimes w_{2}\right), \quad w_{2}=\iota\left(\llbracket C \rrbracket \otimes w_{1}\right) \quad \text { and } \quad \iota(\llbracket C \rrbracket) \circ w_{1}=w \circ w_{2} \tag{5}
\end{equation*}
$$

holds for some worlds w_{1}, w_{2} in W.
First, we find a superset of the precondition $\llbracket \Gamma \rrbracket(w) * \iota^{-1}(w)(e m p) * r$ in the assumption above, replacing the first two $*$-conjuncts as follows:

$$
\begin{aligned}
\llbracket \Gamma \rrbracket(w) & \subseteq \llbracket \Gamma \rrbracket\left(w \circ w_{2}\right) & & \text { by monotonicity of } \llbracket \Gamma \rrbracket \text { and } w_{2} \in W \\
& =\llbracket \Gamma \rrbracket\left(\iota(\llbracket C \rrbracket) \circ w_{1}\right) & & \text { since } \iota(\llbracket C \rrbracket) \circ w_{1}=w \circ w_{2} \\
& =\llbracket \Gamma \otimes C \rrbracket\left(w_{1}\right) & & \text { by definition of } \otimes . \\
\iota^{-1}(w)(e m p) & \subseteq \iota^{-1}(w)\left(e m p \circ w_{2}\right) & & \text { by monotonicity of } \iota^{-1}(w) \text { and } w_{2} \in W \\
& =\iota^{-1}(w)\left(w_{2} \circ e m p\right) & & \text { since emp is the unit } \\
& =\left(\iota^{-1}(w) \otimes w_{2}\right)(e m p) & & \text { by definition of } \otimes \\
& =\iota^{-1}\left(w_{1}\right)(e m p) & & \text { since } w_{1}=\iota\left(\iota^{-1}(w) \otimes w_{2}\right) .
\end{aligned}
$$

Thus, by the monotonicity of separating conjunction, we have that

$$
\begin{equation*}
(k,(\rho, h)) \in \llbracket \Gamma \rrbracket(w) * \iota^{-1}(w)(e m p) * r \subseteq \llbracket \Gamma \otimes C \rrbracket\left(w_{1}\right) * \iota^{-1}\left(w_{1}\right)(e m p) * r . \tag{6}
\end{equation*}
$$

By the assumed validity of the judgement $\Gamma \otimes C \Vdash t: \chi \otimes C * C$, (6) entails

$$
\begin{equation*}
(k,(\rho(t), h)) \in \mathcal{E}(\llbracket \chi \otimes C * C \rrbracket * r)\left(w_{1}\right) . \tag{7}
\end{equation*}
$$

We need to show that $(k,(\rho(t), h)) \in \mathcal{E}(\llbracket \chi \rrbracket * r)(w)$, so assume $(\rho(t) \mid h) \longmapsto \longmapsto^{j}$ ($t^{\prime} \mid h^{\prime}$) for some $j \leq k$ such that $\left(t^{\prime} \mid h^{\prime}\right)$ is irreducible. From (7) we then obtain

$$
\begin{equation*}
\left(k-j,\left(t^{\prime}, h^{\prime}\right)\right) \in \bigcup_{w^{\prime}} \llbracket \chi \otimes C * C \rrbracket\left(w_{1} \circ w^{\prime}\right) * \iota^{-1}\left(w_{1} \circ w^{\prime}\right)(e m p) * r . \tag{8}
\end{equation*}
$$

Now observe that we have

$$
\begin{aligned}
\llbracket \chi & \otimes C * C \rrbracket\left(w_{1} \circ w^{\prime}\right) * \iota^{-1}\left(w_{1} \circ w^{\prime}\right)(e m p) \\
& =\llbracket \chi \rrbracket\left(\iota(\llbracket C \rrbracket) \circ w_{1} \circ w^{\prime}\right) * \llbracket C \rrbracket\left(w_{1} \circ w^{\prime}\right) * \iota^{-1}\left(w_{1} \circ w^{\prime}\right)(e m p) \\
& =\llbracket \chi \rrbracket\left(\iota(\llbracket C \rrbracket) \circ w_{1} \circ w^{\prime}\right) * \iota^{-1}\left(\iota(\llbracket C \rrbracket) \circ w_{1} \circ w^{\prime}\right)(e m p) \\
& =\llbracket \chi \rrbracket\left(w \circ w^{\prime \prime}\right) * \iota^{-1}\left(w \circ w^{\prime \prime}\right)(e m p)
\end{aligned}
$$

for $w^{\prime \prime} \stackrel{\text { def }}{=} w_{2} \circ w^{\prime}$, since $w \circ w_{2}=\iota(\llbracket C \rrbracket) \circ w_{1}$. Thus, (8) entails that $\left(k-j,\left(t^{\prime}, h^{\prime}\right)\right)$ is in $\bigcup_{w^{\prime \prime}} \llbracket \chi \rrbracket\left(w \circ w^{\prime \prime}\right) * \iota^{-1}\left(w \circ w^{\prime \prime}\right)(e m p) * r$, and we are done.

5 Generalized Frame and Anti-frame Rules

The frame and anti-frame rules allow for hiding of invariants. However, to hide uses of local state, say for a function, it is, in general, not enough only to allow hiding of global invariants that are preserved across arbitrary sequences of calls and returns. For instance, consider the function f with local reference cell r :

$$
\begin{equation*}
\text { let } r=\operatorname{ref} 0 \text { in fun } f(g)=(\operatorname{inc}(r) ; g() ; \operatorname{dec}(r)) \tag{9}
\end{equation*}
$$

If we write int n for the singleton integer type containing n, we may wish to hide the capability $I=\{\sigma: \operatorname{ref}(\operatorname{int} 0)\}$ to capture the intuition that the cell $r:[\sigma]$
stores 0 upon termination. However, there could well be re-entrant calls to f and $\{\sigma: \operatorname{ref}($ int 0$)\}$ is not an invariant for those calls.

Thus Pottier [14] proposed two extensions to the anti-frame rule that allows for hiding of families of invariants. The first idea is that each invariant in the family is a local invariant that holds for one level of the recursive call of a function. This extension allows us to hide "well-bracketed" [10] uses of local state. For instance, the \mathbb{N}-indexed family of invariants $I n=\{\sigma: \operatorname{ref}($ int $n)\}$ can be used for (9); see the examples in [14]. The second idea is to allow each local invariant to evolve in some monotonic fashion; this allows us to hide even more uses of local state. The idea is related to the notion of evolving invariants for local state in recent work on reasoning about contextual equivalence [1,10]. (Space limitations preclude us from including examples; please see [14] for examples.)

In summary, we want to allow the hiding of a family of capabilities $(I)_{i \in \kappa}$ indexed over a preordered set (κ, \leq). The preorder is used to capture that the local invariants can evolve in a monotonic fashion, as expressed in the new definition of the action of \otimes on function types (note that I on the right-hand side of \otimes now has kind $\kappa \rightarrow \mathrm{CAP})$:

$$
\left(\chi_{1} \rightarrow \chi_{2}\right) \otimes I=\forall i .\left(\left(\chi_{1} \otimes I\right) * I i \rightarrow \exists j \geq i .\left(\left(\chi_{2} \otimes I\right) * I j\right)\right)
$$

Observe how this definition captures the intuitive idea: if the invariant $I i$ holds when the function is called then, upon return, we know that an invariant $I j$ (for $j \in \kappa, j \geq i$) holds. Different recursive calls may use different local invariants due to the quantification over i. The generalized frame and anti-frame rules are:

$$
[G F] \frac{\Gamma \Vdash t: \chi}{\Gamma \otimes I * I i \Vdash t: \exists j \geq i .(\chi \otimes I) * I j} \quad[G A F] \frac{\Gamma \otimes I \Vdash t: \exists i .(\chi \otimes I) * I i}{\Gamma \Vdash t: \chi}
$$

We now show how to extend our model of the type and capability calculus to accomodate hiding of such more expressive families of invariants. Naturally, the first step is to refine our notion of world, since the worlds are used to describe hidden invariants.

Generalized worlds and generalized world extension. Suppose \mathcal{K} is a (small) collection of preordered sets. We write \mathcal{K}^{*} for the finite sequences over \mathcal{K}, ε for the empty sequence, and use juxtaposition to denote concatenation. For convenience, we will sometimes identify a sequence $\alpha=\kappa_{1}, \ldots, \kappa_{n}$ over \mathcal{K} with the preorder $\kappa_{1} \times \cdots \times \kappa_{n}$. As in Section 3, we define the worlds for the Kripke model in two steps, starting from an equation without any monotonicity requirements: $C B U l t_{n e}$ has all non-empty coproducts, and there is a unique solution to the two equations

$$
\begin{equation*}
X \cong \sum_{\alpha \in \mathcal{K}^{*}} X_{\alpha}, \quad X_{\kappa_{1}, \ldots, \kappa_{n}}=\left(\kappa_{1} \times \cdots \times \kappa_{n}\right) \rightarrow\left(\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\text { Heap })\right) \tag{10}
\end{equation*}
$$

with isomorphism $\iota: \sum_{\alpha \in \mathcal{K}^{*}} X_{\alpha} \rightarrow X$ in CBUlt $_{n e}$, where each $\kappa \in \mathcal{K}$ is equipped with the discrete metric. Each X_{α} consists of the α-indexed families of (worlddependent) predicates so that, in comparison to Section $3, X$ consists of all these families rather than individual predicates.

The composition operation $\circ: X \times X \rightarrow X$ is now given by $x_{1} \circ x_{2}=$ $\iota\left(\left\langle\alpha_{1} \alpha_{2}, p\right\rangle\right)$ where $\left\langle\alpha_{i}, p_{i}\right\rangle=\iota^{-1}\left(x_{i}\right)$, and where $p \in X_{\alpha_{1} \alpha_{2}}$ is defined by

$$
p\left(i_{1} i_{2}\right)(x)=p_{1}\left(i_{1}\right)\left(x_{2} \circ x\right) * p_{2}\left(i_{2}\right)(x) .
$$

for $i_{1} \in \alpha_{1}, i_{2} \in \alpha_{2}$. That is, the combination of an α_{1}-indexed family p_{1} and an α_{2}-indexed family p_{2} is a family p over $\alpha_{1} \alpha_{2}$, but there is no interaction between the index components i_{1} and i_{2} : they concern disjoint regions of the heap.

From here on we can proceed essentially as in Section 3: The composition operation can be shown associative, with a left and right unit given by emp $=$ $\iota\left(\left\langle\varepsilon, \lambda_{-}, . I\right\rangle\right)$. For $f: \frac{1}{2} \cdot X \rightarrow Y$ the extension operation $(f \otimes x)\left(x^{\prime}\right)=f\left(x \circ x^{\prime}\right)$ is also defined as before (but with respect to the solution (10) and the new - operation). We then carve out from X the subset of hereditarily monotonic functions W, which we again obtain as fixed point of a contractive function on the closed and non-empty subsets of X. Let us write \sim for the (recursive) partial equivalence relation on X where $\iota\left(\left\langle\alpha_{1} \alpha_{2}, p\right\rangle\right) \sim \iota\left(\left\langle\alpha_{2} \alpha_{1}, q\right\rangle\right)$ holds if $p\left(i_{1} i_{2}\right)\left(x_{1}\right)=$ $q\left(i_{2} i_{1}\right)\left(x_{2}\right)$ for all $i_{1} \in \alpha_{1}, i_{2} \in \alpha_{2}$ and $x_{1} \sim x_{2}$. Then $w \in W$ iff $w \sim w$ and

$$
\exists \alpha, p . w=\iota\langle\alpha, p\rangle \wedge \forall i \in \alpha . \forall w_{1}, w_{2} \in W . p(i)\left(w_{1}\right) \subseteq p(i)\left(w_{1} \circ w_{2}\right) .
$$

Finally, the proof of Lemma 4 can be adapted to show that the operation \circ restricts to the subset W.

Semantics of capabilities and types. The definition of function types changes as follows: given $x \in X,(k$, fun $f(y)=t) \in\left(T_{1} \rightarrow T_{2}\right)(x)$ if and only if

$$
\begin{aligned}
& \left.\forall j<k . \forall w \in W \text { where } \iota^{-1}(x \circ w)=\langle\alpha, p\rangle . \forall r \in \text { UPred (Heap }\right) . \forall i \in \alpha . \\
& \forall(j,(v, h)) \in T_{1}(x \circ w) * p(i)(e m p) * r . \\
& \quad(j, t[f:=\text { fun } f(y)=t, y:=v], h)) \in \mathcal{E}\left(T_{2} * r, x \circ w, i\right),
\end{aligned}
$$

where the extension to expressions now depends on $i \in \alpha$: $(k, t) \in \mathcal{E}(T, x, i)$ if

$$
\begin{aligned}
& \forall j \leq k, t^{\prime}, h^{\prime} \cdot(t \mid h) \longmapsto \longmapsto^{j}\left(t^{\prime} \mid h^{\prime}\right) \wedge\left(t^{\prime} \mid h^{\prime}\right) \text { irreducible } \\
& \quad \Rightarrow\left(k-j,\left(t^{\prime}, h^{\prime}\right)\right) \in \bigcup_{w \in W, i_{1} \in \alpha, i_{2} \in \beta, i_{1} \geq i} T(x \circ w) * q\left(i_{1} i_{2}\right)(e m p)
\end{aligned}
$$

for $\langle\alpha \beta, q\rangle=\iota^{-1}(x \circ w)$.
Next, one proves the analogue of Lemma 5 which shows the well-definedness of $T_{1} \rightarrow T_{2}$ and (a semantic variant of) the distribution axiom for generalized invariants: in particular, given $p \in \kappa \rightarrow C a p$ and setting $w \stackrel{\text { def }}{=} \iota(\langle\kappa, p\rangle)$,

$$
\left.\left(T_{1} \rightarrow T_{2}\right) \otimes w=\forall_{i \in \kappa}\left(\left(T_{1} \otimes w\right) * p i\right) \rightarrow \exists_{j \geq i}\left(\left(T_{2} \otimes w\right) * p j\right)\right)
$$

where \forall and \exists denote the pointwise intersection and union of world-indexed uniform predicates.

Once similar properties are proved for the other type and capability constructors (which do not change for the generalized invariants), we obtain:
Theorem 9 (Soundness). The generalized frame and anti-frame rules $[G F]$ and $[G A F]$ are sound.
In particular, this theorem shows that all the reasoning about the use of local state in the (non-trivial) examples considered by Pottier in [14] is sound.

6 Conclusion and Future Work

We have developed the first soundness proof of the anti-frame rule in the expressive type and capability system of Charguéraud and Pottier by constructing a Kripke model of the system. For our model, we have used a new approach to the construction of worlds by definining them as a recursive subset of a recursively defined metric space, thus avoiding a tedious explicit inverse-limit construction. We have shown that this approach scales, by also extending the model to show soundness of Pottier's generalized frame and anti-frame rules. Future work includes exploring some of the orthogonal extensions of the basic type and capability system: group regions [8] and fates \& predictions [11].

Acknowledgments. We would like to thank François Pottier for many interesting discussions about frame and anti-frame rules.

References

1. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation independence. In: POPL (2009)
2. Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. Fundam. Inf. 77(4), 397-449 (2007)
3. America, P., Rutten, J.J.M.M.: Solving reflexive domain equations in a category of complete metric spaces. J. Comput. Syst. Sci. 39(3), 343-375 (1989)
4. Biering, B., Birkedal, L., Torp-Smith, N.: Bi-hyperdoctrines, higher-order separation logic, and abstraction. ACM Trans. Program. Lang. Syst. 29(5) (2007)
5. Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and higher-order frame rules for Algol-like languages. LMCS 2(5:1) (2006)
6. Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., Yang, H.: Step-indexed Kripke models over recursive worlds. In: POPL (2011), to appear
7. Birkedal, L., Støvring, K., Thamsborg, J.: Realizability semantics of parametric polymorphism, general references, and recursive types. In: Proceedings of FOSSACS. pp. 456-470 (2009)
8. Charguéraud, A., Pottier, F.: Functional translation of a calculus of capabilities. In: Proceedings of ICFP. pp. 213-224 (2008)
9. Crary, K., Walker, D., Morrisett, G.: Typed memory management in a calculus of capabilities. In: Proceedings of POPL. pp. 262-275 (1999)
10. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control effects on local relational reasoning. In: Proceedings of ICFP (2010)
11. Pilkiewicz, A., Pottier, F.: The essence of monotonic state (July 2010), unpublished
12. Pitts, A.M.: Relational properties of domains. Inf. Comput. 127(2), 66-90 (1996)
13. Pottier, F.: Hiding local state in direct style: a higher-order anti-frame rule. In: Proceedings of LICS. pp. 331-340 (2008)
14. Pottier, F.: Generalizing the higher-order frame and anti-frame rules (July 2009), unpublished, available at http://gallium.inria.fr/~fpottier
15. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested Hoare triples and frame rules for higher-order store. In: Proceedings of CSL. pp. 440-454 (2009)
16. Schwinghammer, J., Birkedal, L., Støvring, K.: A step-indexed Kripke model of hidden state (2010), available at http://www.ps.uni-saarland.de/Publications
17. Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., Reus, B.: A semantic foundation for hidden state. In: Proceedings of FOSSACS. pp. 2-16 (2010)
18. Smyth, M.B.: Topology. In: Handbook of Logic in Computer Science, vol. 1. Oxford Univ. Press (1992)

A Definitions

In this section we give the details of the programming language and the type and capability system. For more details and motivation we refer to $[8,13,6,17]$.

Figures 2 and 3 give the syntax and operational semantics of a standard call-by-value higher-order language with recursive procedures. Figures 4 and 5 give the syntax and a structural equivalence relation on types, and Figure 6 presents some subtyping axioms. Figure 7 gives the typing rules that define the typing judgements for values and expressions.

$$
\begin{aligned}
v & ::=x|()| \operatorname{inj}^{i} v\left|\left(v_{1}, v_{2}\right)\right| \text { fun } f(x)=t \mid l \\
t & ::=v|(v t)| \operatorname{case}\left(v_{1}, v_{2}, v\right)\left|\operatorname{proj}^{i} v\right| \operatorname{ref} v \mid \text { get } v \mid \text { set } v
\end{aligned}
$$

Fig. 2. Syntax of values and expressions

$$
\begin{array}{rlrl}
(\text { fun } f(x)=t) v \mid h & \longmapsto t[f:=\text { fun } f(x)=t, x:=v] \mid h & & \\
\operatorname{proj}^{i}\left(v_{1}, v_{2}\right)\left|h \longmapsto v_{i}\right| h & & \text { for } i=1,2 \\
\text { case }\left(v_{1}, v_{2}, \text { inj }^{i} v\right)\left|h \longmapsto v_{i} v\right| h & & \text { for } i=1,2 \\
\text { ref } v|h \longmapsto l| h \cdot[l \mapsto v] & & \text { if } l \notin \operatorname{dom}(h) \\
\text { get } l|h \longmapsto h(l)| h & & \text { if } l \in \operatorname{dom}(h) \\
\text { set }(l, v)|h \longmapsto()| h[l:=v] & & \text { if } l \in \operatorname{dom}(h) \\
v t\left|h \longmapsto v t^{\prime}\right| h^{\prime} & & \text { if } t\left|h \longmapsto t^{\prime}\right| h^{\prime}
\end{array}
$$

Fig. 3. Operational semantics

B Proofs

This section gives details for the metric on relations, and how this is used to carve out the hereditarily monotonic worlds. Moreover, we give the interpretation of capabilities and types with respect to these hereditarily monotonic worlds.

B. 1 Relations on complete ultrametric spaces

Let $(X, d) \in C B U l t_{n e}$, and let $\mathcal{R}(X)$ be the collection of all non-empty and closed relations $R \subseteq X$.

Variables	$\xi::=\alpha\|\beta\| \gamma \mid \sigma$
Capabilities	$C::=C \otimes C\|\emptyset\| C * C\|\{\sigma: \theta\}\| \exists \sigma . C\|\gamma\| \mu \gamma . C \mid \forall \xi . C$
Value types	$\tau::=\tau \otimes C\|0\| 1 \mid$ int $\|\tau+\tau\| \tau \times \tau\|\chi \rightarrow \chi\|[\sigma]\|\alpha\| \mu \alpha . \tau \mid \forall \xi . \tau$
Memory types	$\theta::=\theta \otimes C\|\tau\| \theta+\theta\|\theta \times \theta\| \operatorname{ref} \theta\|\theta * C\| \exists \sigma . \theta\|\beta\| \mu \beta . \theta \mid \forall \xi . \theta$
Computation types	$\chi::=\chi \otimes C\|\tau\| \chi * C \mid \exists \sigma \cdot \chi$
Value contexts	$\Delta::=\Delta \otimes C\|\varnothing\| \Delta, x: \tau$
Linear contexts	$\Gamma::=\Gamma \otimes C\|\varnothing\| \Gamma, x: \chi \mid \Gamma * C$

Fig. 4. Capabilities and types

Proposition 10. Let $d: \mathcal{R}(X) \times \mathcal{R}(X) \rightarrow \mathbb{R}$ be defined by

$$
d(R, S)=\inf \left\{2^{-n} \mid R_{[n]}=S_{[n]}\right\}
$$

Then $(\mathcal{R}(X), d)$ is a complete, 1-bounded, non-empty ultrametric space.
Proof. First, $\mathcal{R}(X)$ is non-empty since it contains X itself, and d is well-defined since $R_{[0]}=S_{[0]}$ holds for any $R, S \in \mathcal{R}$. Next, since $R=S$ is equivalent to $R_{[n]}=S_{[n]}$ for all $n \in \mathbb{N}$, it follows that $d(R, S)=0$ if and only if $R=S$. That the ultrametric inequality $d(R, S) \leq \max \{d(R, T), d(T, S)\}$ holds is immediate by the definition of d, as is the fact that d is symmetric and 1-bounded.

To show completeness, assume that $\left(R_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{R}(X)$. Without loss of generality we may assume that $d\left(R_{n}, R_{n+1}\right) \leq 2^{-n}$ holds for all $n \in \mathbb{N}$, and therefore that $\left(R_{n}\right)_{[n]}=\left(R_{n+1}\right)_{[n]}$ for all $n \geq 0$. Writing S_{n} for $\left(R_{n}\right)_{[n]}$, we define $R \subseteq X$ by

$$
R \stackrel{\text { def }}{=} \bigcap_{n \geq 0} S_{n}
$$

R is closed since each S_{n} is closed. We now prove that R is non-empty, and therefore $R \in \mathcal{R}(X)$, by inductively constructing a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ with $x_{n} \in$ S_{n} : Let x_{0} be an arbitrary element in $S_{0}=X$. Having chosen x_{0}, \ldots, x_{n}, we pick some $x_{n+1} \in S_{n+1}$ such that $x_{n+1} \stackrel{n}{=} x_{n}$; this is always possible because $S_{n}=\left(S_{n+1}\right)_{[n]}$ by our assumption on the sequence $\left(R_{n}\right)_{n \in \mathbb{N}}$. Clearly this is a Cauchy sequence in X, and from $S_{n} \supseteq S_{n+1}$ it follows that $\left(x_{n}\right)_{n \geq k}$ is in fact a sequence in S_{k} for each $k \in \mathbb{N}$. But then also $\lim _{n \in \mathbb{N}} x_{n}$ is in S_{k} for each k, and thus also in R.

We now prove that R is the limit of the sequence $\left(R_{n}\right)_{n \in \mathbb{N}}$. By definition of d it suffices to show that $R_{[k]}=\left(R_{k}\right)_{[k]}$ for all $k \geq 1$, or equivalently, that $R_{[k]}=S_{k}$. From the definition of $R, R \subseteq S_{k}$, which immediately entails $R_{[k]} \subseteq\left(S_{k}\right)_{[k]}=S_{k}$.

To prove the other direction, i.e., $S_{k} \subseteq R_{[k]}$, assume that $x \in S_{k}$. To show that $x \in R_{[k]}$ we inductively construct a Cauchy sequence $\left(x_{n}\right)_{n \geq k}$ with $x_{n} \in S_{n}$,
monoids

$$
\begin{array}{rlrl}
C_{1} \circ C_{2} & \stackrel{\text { def }}{=}\left(C_{1} \otimes C_{2}\right) * C_{2} & C_{1} * C_{2} & =C_{2} * C_{1} \\
\left(C_{1} \circ C_{2}\right) \circ C_{3} & =C_{1} \circ\left(C_{2} \circ C_{3}\right) & \left(C_{1} * C_{2}\right) * C_{3} & =C_{1} *\left(C_{2} * C_{3}\right) \\
C \circ \emptyset & =C & C * \emptyset & =C
\end{array}
$$

monoid actions

$$
\begin{align*}
\left(\cdot \otimes C_{1}\right) \otimes C_{2} & =\cdot \otimes\left(C_{1} \circ C_{2}\right) & \cdot \otimes \emptyset & =\cdot \tag{14}\\
\left(\cdot * C_{1}\right) * C_{2} & =\cdot *\left(C_{1} * C_{2}\right) & \cdot * \emptyset & =\cdot \tag{15}
\end{align*}
$$

action by $*$ on singleton

$$
\begin{equation*}
\{\sigma: \theta\} * C=\{\sigma: \theta * C\} \tag{16}
\end{equation*}
$$

action by $*$ on linear environments

$$
\begin{equation*}
(\Gamma, x: \chi) * C=\Gamma, x:(\chi * C)=(\Gamma * C), x: \chi \tag{17}
\end{equation*}
$$

action by \otimes on capabilities, types, and environments

$$
\left.\begin{array}{rl}
(\cdot * \cdot) \otimes C & =(\cdot \otimes C) *(\cdot \otimes C) \\
(\exists \sigma \cdot) \otimes C & =\exists \sigma \cdot(\cdot \otimes C) \quad \text { if } \sigma \notin \operatorname{RegNames}(C) \\
\emptyset \otimes C & =\emptyset \\
\{\sigma: \theta\} \otimes C & =\{\sigma: \theta \otimes C\} \\
0 \otimes C & =0 \\
1 \otimes C & =1 \\
\text { int } \otimes C & =\text { int } \\
\left(\theta_{1}+\theta_{2}\right) \otimes C & =\left(\theta_{1} \otimes C\right)+\left(\theta_{2} \otimes C\right) \\
\left(\theta_{1} \times \theta_{2}\right) \otimes C & =\left(\theta_{1} \otimes C\right) \times\left(\theta_{2} \otimes C\right) \\
(\forall \xi \cdot \theta) \otimes C & =\forall \xi \cdot(\theta \otimes C) \quad \text { if } \xi \notin f v(C) \\
\left(\chi_{1} \rightarrow \chi_{2}\right) \otimes C & =\left(\chi_{1} \circ C\right) \rightarrow\left(\chi_{2} \circ C\right) \\
{[\sigma] \otimes C} & =[\sigma] \\
(\text { ref } \theta) \otimes C & =\text { ref }(\theta \otimes C) \\
\varnothing & \otimes C
\end{array}\right)
$$

region abstraction

$$
\begin{align*}
\exists \sigma_{1} \cdot \exists \sigma_{2} \cdot & =\exists \sigma_{2} \cdot \exists \sigma_{1} \cdot \tag{34}\\
\cdot *(\exists \sigma \cdot C) & =\exists \sigma \cdot(\cdot * C) \tag{35}\\
\left\{\sigma_{1}: \exists \sigma_{2} \cdot \theta\right\} & =\exists \sigma_{2} \cdot\left\{\sigma_{1}: \theta\right\} \quad \text { where } \sigma_{1} \neq \sigma_{2} \tag{36}
\end{align*}
$$

focusing

$$
\begin{align*}
\left\{\sigma_{1}: \operatorname{ref} \theta\right\} & =\exists \sigma_{2} \cdot\left\{\sigma_{1}: \operatorname{ref}\left[\sigma_{2}\right]\right\} *\left\{\sigma_{2}: \theta\right\} \tag{37}\\
\left\{\sigma: \theta_{1} \times \theta_{2}\right\} & =\exists \sigma_{1} \cdot\left\{\sigma:\left[\sigma_{1}\right] \times \theta_{2}\right\} *\left\{\sigma_{1}: \theta_{1}\right\} \tag{38}\\
\left\{\sigma: \theta_{1} \times \theta_{2}\right\} & =\exists \sigma_{2} \cdot\left\{\sigma: \theta_{1} \times\left[\sigma_{2}\right]\right\} *\left\{\sigma_{2}: \theta_{2}\right\} \tag{39}\\
\left\{\sigma: \theta_{1}+0\right\} & =\exists \sigma_{1} \cdot\left\{\sigma:\left[\sigma_{1}\right]+0\right\} *\left\{\sigma_{1}: \theta_{1}\right\} \tag{40}\\
\left\{\sigma: 0+\theta_{2}\right\} & =\exists \sigma_{2} \cdot\left\{\sigma: 0+\left[\sigma_{2}\right]\right\} *\left\{\sigma_{2}: \theta_{2}\right\} \tag{41}
\end{align*}
$$

recursion

$$
\begin{align*}
\mu \gamma \cdot C & =C[\gamma:=\mu \gamma \cdot C] \tag{42}\\
\mu \alpha \cdot \tau & =\tau[\alpha:=\mu \alpha \cdot \tau] \tag{43}\\
\mu \beta \cdot \theta & =\theta[\beta:=\mu \beta \cdot \theta] \tag{44}
\end{align*}
$$

Fig. 5. Structural equivalence
(first-order) frame axiom

$$
\begin{equation*}
\chi_{1} \rightarrow \chi_{2} \leq\left(\chi_{1} * C\right) \rightarrow\left(\chi_{2} * C\right) \tag{45}
\end{equation*}
$$

free

$$
\begin{equation*}
C_{1} * C_{2} \leq C_{1} \tag{46}
\end{equation*}
$$

singletons

$$
\begin{align*}
\tau & \leq \exists \sigma \cdot[\sigma] *\{\sigma: \tau\} \tag{47}\\
{[\sigma] *\{\sigma: \tau\} } & \leq \tau *\{\sigma: \tau\} \tag{48}
\end{align*}
$$

Fig. 6. Some subtyping axioms

$$
\begin{array}{llll}
\begin{array}{l}
\mathrm{VAR} \\
\frac{(x: \tau) \in \Delta}{\Delta \vdash x: \tau}
\end{array} & \begin{array}{l}
\text { Unit } \\
\Delta \vdash(): 1
\end{array} & \frac{\Delta N J}{\Delta \vdash\left(\mathrm{inj}^{i} v\right):\left(\tau_{1}+\tau_{2}\right)} & \frac{\Delta \vdash v: \tau_{i}}{\Delta \vdash\left(v_{1}, v_{2}\right):\left(\tau_{1} \times \tau_{2}\right)}
\end{array}
$$

$$
\begin{array}{ll}
\begin{array}{l}
\text { VAL } \\
\Delta \vdash v: \tau \\
\Delta \Vdash v: \tau
\end{array} & \begin{array}{l}
\text { APP } \\
\Delta \vdash v: \chi_{1} \rightarrow \chi_{2}
\end{array} \quad \Delta, \Gamma \Vdash t: \chi_{1} \\
\Delta, \Gamma \Vdash(v t): \chi_{2}
\end{array} \quad \begin{aligned}
& \text { ProJ-1 } \\
& \Gamma \Vdash v:[\sigma] *\left\{\sigma: \tau_{1} \times \theta_{2}\right\} \\
& \Gamma \Vdash \operatorname{proj}^{1} v: \tau_{1} *\left\{\sigma: \tau_{1} \times \theta_{2}\right\}
\end{aligned}
$$

RecFun
\forall-Intro
Proj-2
$\frac{\Gamma \Vdash v:[\sigma] *\left\{\sigma: \theta_{1} \times \tau_{2}\right\}}{\Gamma \Vdash \operatorname{proj}^{2} v: \tau_{2} *\left\{\sigma: \theta_{1} \times \tau_{2}\right\}} \quad \frac{\Delta, f: \chi_{1} \rightarrow \chi_{2}, x: \chi_{1} \Vdash t: \chi_{2}}{\Delta \vdash \text { fun } f(x)=t: \chi_{1} \rightarrow \chi_{2}} \quad \frac{\Delta \vdash v: \tau}{\Delta \vdash v: \forall \xi \cdot \tau} \xi \notin \Delta$
Case
$\Delta \vdash v_{1}:\left(\exists \sigma_{1} \cdot\left[\sigma_{1}\right] *\left\{\sigma:\left[\sigma_{1}\right]+0\right\} *\left\{\sigma_{1}: \theta_{1}\right\} * C\right) \rightarrow \chi$
\forall-Elim-
$\frac{\Delta \vdash v: \forall \alpha . \tau}{\Delta \vdash v: \tau\left[\alpha:=\tau^{\prime}\right]}$
$\Delta \vdash v_{2}:\left(\exists \sigma_{2} \cdot\left[\sigma_{2}\right] *\left\{\sigma: 0+\left[\sigma_{2}\right]\right\} *\left\{\sigma_{2}: \theta_{2}\right\} * C\right) \rightarrow \chi$
$\frac{\Delta, \Gamma \Vdash v:[\sigma] *\left\{\sigma: \theta_{1}+\theta_{2}\right\} * C}{\Delta, \Gamma \Vdash \operatorname{case}\left(v_{1}, v_{2}, v\right): \chi}$
$\frac{\Gamma \text { Ref }}{\Gamma \Vdash v: \tau}$
Get
$\frac{\Gamma \Vdash v:[\sigma] *\{\sigma: \operatorname{ref} \tau\}}{\Gamma \Vdash \operatorname{get} v: \tau *\{\sigma: \operatorname{ref} \tau\}}$
SET
$\frac{\stackrel{\text { SET }}{\Gamma \Vdash v:\left([\sigma] \times \tau_{2}\right) *\left\{\sigma: \operatorname{ref} \tau_{1}\right\}}}{\Gamma \Vdash \operatorname{set} v: 1 *\left\{\sigma: \operatorname{ref} \tau_{2}\right\}}$
Shallow-Frame
Deep-Frame
$\frac{\Gamma \Vdash t: \chi}{\Gamma * C \Vdash t: \chi * C}$
$\frac{\Gamma \Vdash t: \chi}{(\Gamma \otimes C) * C \Vdash t:(\chi \otimes C) * C}$
$\begin{aligned} & \text { Anti-Frame } \\ & \Gamma \otimes C \Vdash t:(\chi \otimes C) * C \\ & \Gamma \Vdash t: \chi\end{aligned}$ $\begin{aligned} & \text { SUB } \\ & \Gamma \Vdash t: \chi_{1} \quad \chi_{1} \leq \chi_{2} \\ & \Gamma \Vdash t: \chi_{2}\end{aligned}$

Fig. 7. Typing of values and expressions
$x_{k}=x$ and $x_{n+1} \stackrel{n}{=} x_{n}$ analogously to the one above. Then $\lim _{m} x_{m}$ is in S_{n} for each $n \geq 0$, and thus also in R. Since $d_{X}\left(x_{k}, \lim _{n \geq k} x_{n}\right) \leq 2^{-k}$ by the ultrametric inequality, $x_{k} \in R_{[k]}$, or equivalently, $x \in R_{[k]}$.

B. 2 Hereditarily monotonic recursive worlds

Let the function $\Phi: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ be defined by $\Phi(A)=\left\{\iota(p) \mid \forall x, x_{0} \in\right.$ A. $\left.p(x) \subseteq p\left(x \circ x_{0}\right)\right\}$.

Lemma 11. For each $A \in \mathcal{R}, \Phi(A)$ is non-empty and closed.
Proof. $\Phi(A)$ is non-empty since it contains the constant functions into UPred (Heap). As in [7], one can use the completeness of UPred (Heap) and the way its metric interacts with subset inclusion to show that $\Phi(A)$ is closed.

Lemma 12. Φ is contractive: $A \xlongequal{n} B$ implies $\Phi(A) \stackrel{n+1}{=} \Phi(B)$.
Proof. Let $n \geq 0$ and assume $A \stackrel{n}{=} B$. Let $\iota(p) \in \Phi(A)_{[n+1]}$. We must show that $\iota(p) \in \Phi(B)_{[n+1]}$. By definition there exists $\iota(q) \in \Phi(A)$ such that $p \stackrel{n+1}{=} q$. Set $r(w)=q(w)_{[n+1]}$. Then $r \stackrel{n+1}{=} p$ and it suffices to show that $\iota(r) \in \Phi(B)$. To this end, let $w_{0}, w_{1} \in B$. By assumption there exist $w_{0}^{\prime}, w_{1}^{\prime} \in A$ such that $w_{0}^{\prime} \stackrel{n}{=} w_{0}$ and $w_{1}^{\prime} \stackrel{n}{=} w_{1}$ in X, or equivalently, $w_{0}^{\prime} \stackrel{n+1}{=} w_{0}$ and $w_{1}^{\prime} \stackrel{n+1}{=} w_{1}$ in $\frac{1}{2} \cdot X$. Using the non-expansiveness of \circ, this also implies $w_{0}^{\prime} \circ w_{1}^{\prime} \stackrel{n+1}{=} w_{0} \circ w_{1}$ in $\frac{1}{2} \cdot X$. Since $q\left(w_{0}\right) \stackrel{n+1}{=} q\left(w_{0}^{\prime}\right) \subseteq q\left(w_{0}^{\prime} \circ w_{1}^{\prime}\right) \stackrel{n+1}{=} q\left(w_{0} \circ w_{1}\right)$ by the non-expansiveness of q and the assumption that $\iota(q) \in \Phi(A)$ we obtain the required inclusion $r\left(w_{0}\right) \subseteq r\left(w_{0} \circ w_{1}\right)$.

Lemma 13. For any preorder $(A, \sqsubseteq), \frac{1}{2} \cdot W \rightarrow_{\operatorname{mon}} \operatorname{UPred}(A)$ is a non-empty and closed subset of $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(A)$.

Proof. Similar to the proof of Lemma 11.

B. 3 Closure of W under composition

Lemma 14. For all $n \in \mathbb{N}$, if $w_{1}, w_{2} \in W$ then $w_{1} \circ w_{2} \in W_{[n]}$.
Since $W=\bigcap_{n} W_{[n]}$ it follows that $w_{1}, w_{2} \in W \Rightarrow w_{1} \circ w_{2} \in W$.
Proof. Since $W_{[0]}=X$ the claim trivially holds in case $n=0$. Now suppose $n>0$ and let $w_{1}, w_{2} \in W$; we must prove that $w_{1} \circ w_{2} \in W_{[n]}$. Let w_{1}^{\prime} be such that $\iota^{-1}\left(w_{1}^{\prime}\right)(w)=\iota^{-1}\left(w_{1}\right)(w)_{[n]}$. Observe that $w_{1}^{\prime} \in W$, and $w \stackrel{n}{=} w^{\prime}$ in $\frac{1}{2} \cdot X$ implies $w_{1}^{\prime}(w)=w_{1}^{\prime}\left(w^{\prime}\right)$. Since $w_{1} \stackrel{n}{=} w_{1}^{\prime}$, the non-expansiveness of \circ implies $w_{1} \circ w_{2} \stackrel{n}{=} w_{1}^{\prime} \circ w_{2}$, and thus it suffices to show that $w_{1}^{\prime} \circ w_{2} \in W=\Phi(W)$. To
see this, let $w, w_{0} \in W$. Note that by induction hypothesis $w_{2} \circ w \in W_{[n-1]}$, i.e., there exists $w^{\prime} \in W$ such that $w^{\prime} \stackrel{n}{=} w_{2} \circ w$ holds in $\frac{1}{2} \cdot W$. We thus obtain

$$
\begin{aligned}
\iota^{-1}\left(w_{1}^{\prime} \circ w_{2}\right)(w) & =\iota^{-1}\left(w_{1}^{\prime}\right)\left(w_{2} \circ w\right) * \iota^{-1}\left(w_{2}\right)(w) \\
& =\iota^{-1}\left(w_{1}^{\prime}\right)\left(w^{\prime}\right) * \iota^{-1}\left(w_{2}\right)(w) \\
& \subseteq \iota^{-1}\left(w_{1}^{\prime}\right)\left(w^{\prime} \circ w_{0}\right) * \iota^{-1}\left(w_{2}\right)\left(w \circ w_{0}\right) \\
& =\iota^{-1}\left(w_{1}^{\prime}\right)\left(\left(w_{2} \circ w\right) \circ w_{0}\right) * \iota^{-1}\left(w_{2}\right)\left(w \circ w_{0}\right) \\
& =\iota^{-1}\left(w_{1}^{\prime} \circ w_{2}\right)\left(w \circ w_{0}\right),
\end{aligned}
$$

i.e., $w_{1}^{\prime} \circ w_{2} \in W$.

B. 4 Closure under extension

Lemma 15. If $w \in W$ and $f \in \frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(A)$ then $f \otimes w \in \frac{1}{2} \cdot W \rightarrow_{\text {mon }}$ $\operatorname{UPred}(A)$. Moreover, the assignment of $f \otimes w$ to f and w is non-expansive as a function of f and contractive as a function of w.

Proof. Let $w_{1}, w_{2} \in W$. Then $w \circ w_{1} \in W$ by Lemma 14, and hence

$$
(f \otimes w)\left(w_{1}\right)=f\left(w \circ w_{1}\right) \subseteq f\left(\left(w \circ w_{1}\right) \circ w_{2}\right)=(f \otimes w)\left(w_{1} \circ w_{2}\right)
$$

by the assumption that f is in $\frac{1}{2} \cdot W \rightarrow_{\operatorname{mon}} \operatorname{UPred}(A)$.

B. 5 Closure under universal quantification

Let S be a set (discrete metric space), and suppose $F: S \rightarrow\left(\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(A)\right)$. Then we define $\forall F: \frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(A)$ by

$$
(\forall F)(x)=\bigcap_{s \in S} F(s)(x)
$$

Lemma 16. With F as above, $\forall F$ is non-expansive, and $(\forall F)(x)$ is upwards closed and uniform. If $F(s) \in \frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(A)$ for all $s \in S$ then $\forall F \in$ $\frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(A)$. The assignment of $\forall F$ to F is non-expansive.

This observation can be used to justify quantification over types, capabilities and region names in Cap, $V T$ and $M T$.

B. 6 Recursion

$C a p, V T$ and $M T$ are non-empty and closed subsets of complete ultrametric spaces, by Lemma 13. Thus, any contractive function that restricts to these sets has a unique fixed point in the respective set. This observation can be used to justify recursive definitions of capabilities and types, noting that formal contractiveness of a syntactic type expression ensures contractiveness of its interpretation (see below). Moreover, the assignment to a contractive function of its unique fixed point is a non-expansive operation.

B. 7 Closure of $C a p$ under separating conjunction

Lemma 17. If $f, g \in C$ ap then $f * g \in C a p$. Moreover, the assignment of $f * g$ to f, g is non-expansive.

Proof. Let $w_{1}, w_{2} \in W$, then $(f * g)\left(w_{1}\right)=f\left(w_{1}\right) * g\left(w_{1}\right) \subseteq f\left(w_{1} \circ w_{2}\right) * g\left(w_{1} \circ\right.$ $\left.w_{2}\right)=(f * g)\left(w_{1} \circ w_{2}\right)$ follows from $f, g \in C a p$ and the monotonicity of separating conjunction on UPred (Heap).

B. 8 Closure of Cap under singleton capabilities

For $v \in$ Val and f in $\frac{1}{2} \cdot X \rightarrow U P r e d(H e a p)$ define $\{v: f\}$ in $\frac{1}{2} \cdot X \rightarrow U \operatorname{UPred}($ Heap $)$ by

$$
\{v: f\}(x) \stackrel{\text { def }}{=}\{(k, h) \mid(k,(v, h)) \in f(x)\}
$$

Lemma 18. With v, f as above, $\{v: f\}$ is non-expansive, and $\{v: f\}(x)$ is upwards closed and uniform for all $x \in X$. If $f \in$ Cap then $\{v: f\} \in C a p$, and the assignment of $\{v: f\}$ to f is non-expansive.

Proof. The non-expansiveness of $\{v: f\}$ follows from the non-expansiveness of f. Similarly, the claim $\{v: f\}(x) \in \operatorname{UPred}($ Heap $)$ follows from $f(x) \in$ $\operatorname{UPred}(\operatorname{Val} \times$ Heap $)$. Finally, if $w_{1}, w_{2} \in W$ then $\{v: f\}\left(w_{1}\right) \subseteq\{v: f\}\left(w_{1} \circ w_{2}\right)$ follows if $f \in C a p$, for then $f\left(w_{1}\right) \subseteq f\left(w_{1} \circ w_{2}\right)$.

B. 9 Closure of $V T$ under sums

For f_{1}, f_{2} in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}($ Val $)$ define $f_{1}+f_{2}$ in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}($ Val $)$ by

$$
\left(f_{1}+f_{2}\right)(x) \stackrel{\text { def }}{=}\left\{\left(k, \mathrm{inj}^{i} v\right) \mid k>0 \Rightarrow(k-1, v) \in f_{i}(x)\right\}
$$

Lemma 19. With f_{1}, f_{2} as above, $f_{1}+f_{2}$ is non-expansive, and $\left(f_{1}+f_{2}\right)(x)$ is uniform for all $x \in X$. If $f_{1}, f_{2} \in V T$ then $f_{1}+f_{2} \in V T$, and the assignment of $f_{1}+f_{2}$ to f_{1}, f_{2} is contractive.

Proof. Let $x \stackrel{n}{=} x^{\prime}$ in $1 / 2 \cdot X$ and $f_{1} \stackrel{n}{=} f_{1}^{\prime}$ and $f_{2} \stackrel{n}{=} f_{2}^{\prime}$. Then, for any $0<k \leq n$, $(k-1, v) \in f_{i}(x)$ iff $(k-1, v) \in f_{i}^{\prime}\left(x^{\prime}\right)$ by the non-expansiveness of application and the definition of the metric on $\operatorname{UPred}(\operatorname{Val})$. Thus $\left.\left(f_{1}+f_{2}\right)(x)^{n+1}=f_{1}^{\prime}+f_{2}^{\prime}\right)\left(x^{\prime}\right)$ from which the non-expansiveness of $f_{1}+f_{2}$ as well as the contractiveness of the assignment of $f_{1}+f_{2}$ to f_{1}, f_{2} follows. That $\left(f_{1}+f_{2}\right)(x) \in \operatorname{UPred}(\operatorname{Val})$ follows from $f_{i}(x) \in \operatorname{UPred}(\operatorname{Val})$. Finally, if $w_{1}, w_{2} \in W$ then $\left(f_{1}+f_{2}\right)\left(w_{1}\right) \subseteq$ $\left(f_{1}+f_{2}\right)\left(w_{1} \circ w_{2}\right)$ follows from by definition of $f_{1}+f_{2}$ if $f_{1}, f_{2} \in V T$, since then $f_{i}\left(w_{1}\right) \subseteq f_{i}\left(w_{1} \circ w_{2}\right)$ holds.

B. 10 Closure of $\boldsymbol{V T}$ under products

For f_{1}, f_{2} in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val})$ define $f_{1} \times f_{2}$ in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val})$ by

$$
\left(f_{1} \times f_{2}\right)(x) \stackrel{\text { def }}{=}\left\{\left(k,\left(v_{1}, v_{2}\right)\right) \mid k>0 \Rightarrow\left(k-1, v_{i}\right) \in f_{i}(x)\right\}
$$

Lemma 20. With f_{1}, f_{2} as above, $f_{1} \times f_{2}$ is non-expansive, and $\left(f_{1} \times f_{2}\right)(x)$ is uniform for all $x \in X$. If $f_{1}, f_{2} \in V T$ then $f_{1} \times f_{2} \in V T$, and the assignment of $f_{1} \times f_{2}$ to f_{1}, f_{2} is contractive.
Proof. Similar to the previous proof. Let $x \stackrel{n}{=} x^{\prime}$ in $1 / 2 \cdot X$ and $f_{1} \stackrel{n}{=} f_{1}^{\prime}$ and $f_{2} \stackrel{n}{=} f_{2}^{\prime}$. Then, for any $0<k \leq n,(k-1, v) \in f_{i}(x)$ iff $(k-1, v) \in f_{i}^{\prime}\left(x^{\prime}\right)$ by the non-expansiveness of function application and the definition of the metric on $\operatorname{UPred}(\operatorname{Val})$. Thus $\left(f_{1} \times f_{2}\right)(x) \stackrel{n+1}{=}\left(f_{1} \times f_{2}\right)\left(x^{\prime}\right)$. That $\left(f_{1} \times f_{2}\right)(x) \in \operatorname{UPred}(\operatorname{Val})$ follows from $f_{i}(x) \in \operatorname{UPred}(\operatorname{Val})$. Finally, if $w_{1}, w_{2} \in W$ then the inclusion $\left(f_{1} \times f_{2}\right)\left(w_{1}\right) \subseteq\left(f_{1} \times f_{2}\right)\left(w_{1} \circ w_{2}\right)$ follows by definition of \times if $f_{1}, f_{2} \in V T$.

B. 11 Extension to expressions

For $p \in \operatorname{UPred}(A \times H e a p)$ and $r \in \operatorname{UPred}($ Heap $)$ we define $p * r$ by

$$
p * r=\left\{\left(k,\left(a, h \cdot h^{\prime}\right)\right) \mid(k,(a, h)) \in p \wedge\left(k, h^{\prime}\right) \in r\right\} .
$$

Then $p * r \in U \operatorname{Pred}(A \times$ Heap $)$. This operation can be lifted pointwise, and if $f \in M T$ and $p \in C a p$ then $f * p \in M T$. Sometimes, we will view $r \in U P r e d(H e a p)$ as the constant function $r \in C a p$, and thus write $f * r$ for this pointwise lifting.

Using the former operation on uniform predicates, we define the following extension of memory types from values to expressions.
Definition 21 (Expression typing). Let p in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val} \times$ Heap). Then the function $\mathcal{E}(p): X \rightarrow \operatorname{UPred}(E x p \times$ Heap $)$ is defined by $(k,(t, h)) \in$ $\mathcal{E}(p)(x)$ iff

$$
\begin{aligned}
\forall j \leq k, t^{\prime}, h^{\prime} .(t \mid h) \longmapsto & { }^{j}\left(t^{\prime} \mid h^{\prime}\right) \wedge\left(t^{\prime} \mid h^{\prime}\right) \text { irreducible } \\
& \Rightarrow\left(k-j,\left(t^{\prime}, h^{\prime}\right)\right) \in \bigcup_{w \in W} p(x \circ w) * \iota^{-1}(x \circ w)(e m p)
\end{aligned}
$$

Note that in this definition p is a contractive function on X whereas $\mathcal{E}(p)$ is merely non-expansive. The reason is that the conclusion uses the world x as a heap predicate, qua $\iota^{-1}(x \circ w)(e m p)$, i.e. there is scaling involved, and j may in fact be 0 .

Lemma 22. With p as above, $\mathcal{E}(p)$ is non-expansive, and $\mathcal{E}(p)(x)$ is upwards closed and uniform for all $x \in X$. Moreover, the assignment of $\mathcal{E}(p)$ to p is non-expansive.
Proof. Similar to the previous proofs. We observe that $p \stackrel{n}{=} p^{\prime}$ and $x \stackrel{n}{=} x^{\prime}$ in X implies $p(x \circ w) \stackrel{n}{=} p^{\prime}\left(x^{\prime} \circ w\right)$ and $\iota^{-1}(x \circ w)(e m p) \stackrel{n}{=} \iota^{-1}\left(x^{\prime} \circ w\right)(e m p)$, and thus $\mathcal{E}(p)(x) \stackrel{n}{=} \mathcal{E}\left(p^{\prime}\right)\left(x^{\prime}\right)$. Thus, for $p=p^{\prime}$ we obtain the non-expansiveness of $\mathcal{E}(p)$, and for $x=x^{\prime}$ we obtain the non-expansiveness of the assignment of $\mathcal{E}(p)$ to p by the definition of the sup metric.

B. 12 Closure of $V T$ under arrows

For p, q in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val} \times$ Heap $)$ define $p \rightarrow q$ in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val})$ on $x \in X$ as

$$
\begin{aligned}
& \{(k, \text { fun } f(y)=t) \mid \forall j<k . \forall w \in W . \forall r \in U P r e d(\text { Heap }) . \\
& \\
& \forall(j,(v, h)) \in p(x \circ w) * \iota^{-1}(x \circ w)(\mathrm{emp}) * r . \\
& \quad(j,(t[f:=\text { fun } f(y)=t, y:=v], h)) \in \mathcal{E}(q * r)(x \circ w)\}
\end{aligned}
$$

Lemma 23. With p, q as above, $p \rightarrow q$ is non-expansive, and $(p \rightarrow q)(x)$ is uniform for all $x \in X$. Moreover, $p \rightarrow q \in V T$, and the assignment of $p \rightarrow q$ to p, q is contractive.

Proof. The non-expansiveness is straightforward to check, using Lemma 22. The uniformity is ensured by the explicit quantification over $j<k$ in the definition of $(p \rightarrow q)(x)$. Similarly, that $p \rightarrow q \in V T$ is guaranteed by the explicit quantification over $w \in W$ in the definition of $(p \rightarrow q)(x)$, using the closure of W under - (Lemma 14). Finally, the contractiveness of $\rightarrow \rightarrow$ follows since $p(x \circ w)$ and $\mathcal{E}(q)(x \circ w)$ are only considered up to index j which is strictly below k.

B. 13 Inclusion of $V T$ into $M T$

The inclusion of value types into memory types,

$$
f \in\left(\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val})\right) \mapsto \lambda x .\{(k,(v, h)) \mid h \in \text { Heap } \wedge(k, v) \in f(x)\},
$$

is non-expansive and maps into non-expansive functions from $\frac{1}{2} \cdot X$ to the space $U P r e d(V a l \times H e a p)$. If $f \in V T$ then the right hand side is in $M T$.

B. 14 Closure of $M T$ under sums

For f_{1}, f_{2} in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val} \times$ Heap $)$ define the function $f_{1}+f_{2}$ in $\frac{1}{2} \cdot X \rightarrow$ UPred (Val \times Heap $)$ by

$$
\left(f_{1}+f_{2}\right)(x) \stackrel{\text { def }}{=}\left\{\left(k,\left(\mathrm{inj}^{i} v, h\right)\right) \mid k>0 \Rightarrow(k-1,(v, h)) \in f_{i}(x)\right\} .
$$

As with the sum types on values, this is well-defined, in $M T$ if both f_{1} and f_{2} are in $M T$, and the assignment of $f_{1}+f_{2}$ to f_{1} and f_{2} is contractive.

B. 15 Closure of $M T$ under products

For f_{1}, f_{2} in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val} \times H e a p)$ we define the function $f_{1} \times f_{2}$ in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}($ Val \times Heap $)$ by

$$
\left(f_{1} \times f_{2}\right)(x) \stackrel{\text { def }}{=}\left\{\left(k,\left(\left(v_{1}, v_{2}\right), h_{1} \cdot h_{2}\right)\right) \mid k>0 \Rightarrow\left(k-1,\left(v_{i}, h_{i}\right)\right) \in f_{i}(x)\right\}
$$

As with the product types on values, this is well-defined, $f_{1} \times f_{2}$ is in MT if both f_{1} and f_{2} are in $M T$, and the assignment of $f_{1} \times f_{2}$ to f_{1} and f_{2} is contractive.

B. 16 Closure of $M T$ under reference types

For f in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val} \times$ Heap $)$ define $\operatorname{ref}(f)$ in $\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\operatorname{Val} \times$ Heap $)$ by

$$
r e f(f)(x) \stackrel{\text { def }}{=}\{(k,(l, h \cdot[l \mapsto v])) \mid k>0 \Rightarrow(k-1,(v, h)) \in f(x)\}
$$

Lemma 24. With f as above, $\operatorname{ref}(f)$ is non-expansive, and $\operatorname{ref}(f)(x)$ is upwards closed and uniform for all $x \in X$. If $f \in M T$ then $r e f(f) \in M T$, and the assignment of ref(f) to f is contractive.

B. 17 Interpretation of types and capabilities

The interpretation depends on an environment η, which maps region names $\sigma \in$ RegName to closed values $\eta(\sigma) \in V a l$, capability variables γ to semantic capabilities $\eta(\gamma) \in C a p$, and type variables α and β to semantic types $\eta(\alpha) \in V T$ and $\eta(\beta) \in M T$. Then, we use the semantic type constructors in the evident way, for instance defining $\llbracket\{\sigma: \theta\} \rrbracket_{\eta}=\left\{\eta(\sigma): \llbracket \theta \rrbracket_{\eta}\right\}$ and $\llbracket \chi_{1} \rightarrow \chi_{2} \rrbracket_{\eta}=\llbracket \chi_{1} \rrbracket_{\eta} \rightarrow \llbracket \chi_{2} \rrbracket_{\eta}$. Importantly, we have the extension operation available to interpret invariant extension:

$$
\llbracket C_{1} \otimes C_{2} \rrbracket_{\eta}=\llbracket C_{1} \rrbracket_{\eta} \otimes \iota\left(\llbracket C_{2} \rrbracket_{\eta}\right),
$$

and similarly for $\tau \otimes C$ and $\theta \otimes C$.
We end up with interpretations $\llbracket C \rrbracket_{\eta} \in C a p, \llbracket \tau \rrbracket_{\eta} \in V T$, and $\llbracket \theta \rrbracket_{\eta} \in M T$.

B. 18 Distribution of \otimes over \rightarrow

As an example of validating the type equivalence in the model we prove, on the semantic level, that the distribution axiom for arrow types holds.

Lemma 25. Let $f_{1}, f_{2} \in M T$ and $p \in \operatorname{Cap}$. Then $\left(f_{1} \rightarrow f_{2}\right) \otimes p=\left(f_{1} \otimes p * p\right) \rightarrow$ $\left(f_{2} \otimes p * p\right)$.

Proof. Let $x \in X$ and $(k,($ fun $f(y)=t)) \in\left(\left(f_{1} \rightarrow f_{2}\right) \otimes p\right)(x)=\left(f_{1} \rightarrow f_{2}\right)(\iota(p) \circ$ $x)$. We must prove that $(k,($ fun $f(y)=t)) \in\left(f_{1} \otimes p * p\right) \rightarrow\left(f_{2} \otimes p * p\right)$. To this end, let $j<k, w \in W, r \in U P r e d(H e a p)$, and suppose

$$
\begin{aligned}
(j,(v, h)) & \in\left(f_{1} \otimes p * p\right)(x \circ w) * \iota^{-1}(x \circ w)(e m p) * r \\
& =f_{1}(\iota(p) \circ x \circ w) * p(x \circ w) * \iota^{-1}(x \circ w)(e m p) * r \\
& =f_{1}(\iota(p) \circ x \circ w) * \iota^{-1}(\iota(p) \circ x \circ w)(e m p) * r .
\end{aligned}
$$

Then, by assumption, $(j,(t[f:=$ fun $f(y)=t, y:=v], h)) \in \mathcal{E}\left(f_{2} * r\right)(\iota(p) \circ x \circ w)$. By unfolding the definition of \mathcal{E}, the latter is seen to be equivalent to

$$
(j,(t[f:=\text { fun } f(y)=t, y:=v], h)) \in \mathcal{E}\left(f_{2} \otimes p * p * r\right)(x \circ w),
$$

and thus $(k,($ fun $f(y)=t)) \in\left(f_{1} \otimes p * p\right) \rightarrow\left(f_{2} \otimes p * p\right)$.
The other direction is similar.

Remark 26. Note that we did not use the fact that $f_{1}, f_{2} \in M T$ and $p \in C a p$. This is in line with the semantics given in the earlier work by Birkedal et al. [6]. There, the anti-frame rule was not considered and a model based on the simpler set of worlds X sufficed; the language also contained all of the distribution axioms that we consider here.

B. 19 First-order frame axiom

As an example of validating the subtyping axioms, we consider $\chi_{1} \rightarrow \chi_{2} \leq$ $\chi_{1} * C \rightarrow \chi_{2} * C$.
Lemma 27. Let $f_{1}, f_{2} \in M T$ and $p \in$ Cap, and let $w \in W$. Suppose that $(k$, fun $f(y)=t) \in\left(f_{1} \rightarrow f_{2}\right)(w)$. Then $(k$, fun $f(y)=t) \in\left(f_{1} * p \rightarrow f_{2} * p\right)(w)$.

Proof. By unfolding the definitions, and instantiating the universally quantified $r \in U P r e d(H e a p)$ accordingly. The proof then relies on the fact that $p\left(w \circ w^{\prime}\right) \subseteq$ $p\left(w \circ w^{\prime} \circ w^{\prime \prime}\right)$ holds for all $w^{\prime}, w^{\prime \prime}$ in W, since $w \circ w^{\prime} \in W$ and $p \in C a p$.

B. 20 Semantics of typing judgements

Recall that we have two kinds of judgments, one for typing of values and the other for the typing of expressions:

$$
\Delta \vdash v: \tau \quad \Gamma \Vdash t: \chi
$$

The semantics of a value judgement simply establishes truth with respect to all worlds w, all environments η and all $k \in \mathbb{N}$:

$$
\vDash(\Delta \vdash v: \tau) \stackrel{\text { def }}{\Longleftrightarrow} \forall \eta . \forall w \in W . \forall k \in \mathbb{N} . \forall(k, \rho) \in \llbracket \Delta \rrbracket_{\eta} w .(k, \rho(v)) \in \llbracket \tau \rrbracket_{\eta} w .
$$

Here $\rho(v)$ means the application of the substitution ρ to v. The judgement for expressions mirrors the interpretation of the arrow case for value types, in that there is also a quantification over heap predicates $r \in \operatorname{UPred}($ Heap $)$ and an existential quantification over $w^{\prime} \in W$ through the use of \mathcal{E} :

$$
\begin{aligned}
\vDash & (\Gamma \Vdash t: \chi) \stackrel{\text { def }}{\Longleftrightarrow} \forall \eta . \forall w \in W . \forall k \in \mathbb{N} . \forall r \in \operatorname{UPred}(\text { Heap }) . \\
& \forall(k,(\rho, h)) \in \llbracket \Gamma \rrbracket_{\eta} w * \iota^{-1}(w)(e m p) * r .(k,(\rho(t), h)) \in \mathcal{E}\left(\llbracket \chi \rrbracket_{\eta} * r\right)(w) .
\end{aligned}
$$

The universal quantifications allow us to have frame rules: the universal quantification over worlds w ensures the soundness of the deep frame rule, and the universal quantification over heap predicates r validates the shallow frame rule, as we show next. The existential quantifier plays an important part in the verification of the anti-frame rule below.

B. 21 Shallow frame rule

Soundness of the shallow frame rule is proved analogously to the soundness of the first-order frame axiom. In particular, it is essential that $\llbracket C \rrbracket \in C a p$ below:
Lemma 28. Suppose $\models(\Gamma \Vdash t: \chi)$. Then $\models(\Gamma * C \Vdash t: \chi * C)$.

B. 22 Deep frame rule

Lemma 29. Suppose $\models(\Gamma \Vdash t: \chi)$. Then $\models(\Gamma \otimes C * C \Vdash t: \chi \otimes C * C)$.
Proof. We prove $\models(\Gamma \otimes C * C \Vdash t: \chi \otimes C * C)$. Let $w \in W, k \in \mathbb{N}, r \in$ UPred(Heap) and

$$
\begin{aligned}
(k,(\rho, h)) \in \llbracket \Gamma \otimes C * C \rrbracket(w) & * \iota^{-1}(w)(e m p) * r \\
& =\llbracket \Gamma \rrbracket(\iota(\llbracket C \rrbracket) \circ w) * \iota^{-1}(\iota(\llbracket C \rrbracket) \circ w)(e m p) * r .
\end{aligned}
$$

Since $\llbracket C \rrbracket \in C a p$ we can instantiate $\models(\Gamma \Vdash t: \chi)$ with the world $w^{\prime}=\iota(\llbracket C \rrbracket) \circ w$ to obtain $(k,(\rho(t), h)) \in \mathcal{E}(\llbracket \chi \rrbracket * r)\left(w^{\prime}\right)$. The latter is equivalent to $(k,(\rho(t), h)) \in$ $\mathcal{E}(\llbracket \chi \otimes C * C \rrbracket * r)(w)$.

B. 23 Anti-frame rule

Our soundness proof of the anti-frame rule employs the technique of so-called commutative pairs. This idea had already been present in Pottier's syntactic proof sketch [13], and has been worked out in more detail in [17].

Lemma 30. For all worlds $w_{0}, w_{1} \in W$, there exist $w_{0}^{\prime}, w_{1}^{\prime} \in W$ such that

$$
w_{0}^{\prime}=\iota\left(\iota^{-1}\left(w_{0}\right) \otimes w_{1}^{\prime}\right), \quad w_{1}^{\prime}=\iota\left(\iota^{-1}\left(w_{1}\right) \otimes w_{0}^{\prime}\right), \quad \text { and } \quad w_{0} \circ w_{1}^{\prime}=w_{1} \circ w_{0}^{\prime} .
$$

Proof. Fix $w_{0}, w_{1} \in W$, and define a function F on $X \times X$ defined by

$$
F\left(x_{0}^{\prime}, x_{1}^{\prime}\right)=\left(\iota\left(\iota^{-1}\left(w_{0}\right) \otimes x_{1}^{\prime}\right), \iota\left(\iota^{-1}\left(w_{1}\right) \otimes x_{0}^{\prime}\right)\right) .
$$

Then, F is contractive, since \otimes is contractive in its right argument. Also, F restricts to a function on the non-empty and closed subset $W \times W$ of $X \times X$. Thus, by Banach's fixpoint theorem, there exists a unique fixpoint w_{0}^{\prime} and w_{1}^{\prime} of F. This means that

$$
\begin{equation*}
w_{0}^{\prime}=\iota\left(\iota^{-1}\left(w_{0}\right) \otimes w_{1}^{\prime}\right) \quad \text { and } \quad w_{1}^{\prime}=\iota\left(\iota^{-1}\left(w_{1}\right) \otimes w_{0}^{\prime}\right) \tag{49}
\end{equation*}
$$

Note that these are the first two equalities claimed by this lemma. The remaining claim is $w_{0} \circ w_{1}^{\prime}=w_{1} \circ w_{0}^{\prime}$, and it can be proved as follows. Let $w \in X$.

$$
\begin{aligned}
\iota^{-1}\left(w_{0} \circ w_{1}^{\prime}\right)(w) & =\iota^{-1}\left(w_{0}\right)\left(w_{1}^{\prime} \circ w\right) * \iota^{-1}\left(w_{1}^{\prime}\right)(w) & & (\text { by definition of } \circ) \\
& =\left(\iota^{-1}\left(w_{0}\right) \otimes w_{1}^{\prime}\right)(w) * \iota^{-1}\left(w_{1}^{\prime}\right)(w) & & (\text { by definition of } \otimes) \\
& =\iota^{-1}\left(w_{0}^{\prime}\right)(w) *\left(\iota^{-1}\left(w_{1}\right) \otimes w_{0}^{\prime}\right)(w) & & (\text { by }(49)) \\
& =\iota^{-1}\left(w_{0}^{\prime}\right)(w) * \iota^{-1}\left(w_{1}\right)\left(w_{0}^{\prime} \circ w\right) & & (\text { by definition of } \otimes) \\
& =\iota^{-1}\left(w_{1}\right)\left(w_{0}^{\prime} \circ w\right) * \iota^{-1}\left(w_{0}^{\prime}\right)(w) & & (\text { by commutativity of } *) \\
& =\iota^{-1}\left(w_{1} \circ w_{0}^{\prime}\right)(w) & & (\text { by definition of } \circ) .
\end{aligned}
$$

Since w was chosen arbitrarily, we have $\iota^{-1}\left(w_{0} \circ w_{1}^{\prime}\right)=\iota^{-1}\left(w_{1} \circ w_{0}^{\prime}\right)$, and the claim follows from the injectivity of ι^{-1}.

Lemma 31. Suppose $\models(\Gamma \otimes C \Vdash t: \chi \otimes C * C)$. Then $\models(\Gamma \Vdash t: \chi)$.
Proof. We prove $\models(\Gamma \Vdash t: \chi)$. Let $w \in W, k \in \mathbb{N}, r \in U P r e d(H e a p)$ and

$$
(k,(\rho, h)) \in \llbracket \Gamma \rrbracket(w) * \iota^{-1}(w)(e m p) * r .
$$

We must prove $(k,(\rho(t), h)) \in \mathcal{E}(\llbracket \chi \rrbracket * r)(w)$.
By Lemma 30, there exist worlds w_{1}, w_{2} in W such that

$$
\begin{equation*}
w_{1}=\iota\left(\iota^{-1}(w) \otimes w_{2}\right), \quad w_{2}=\iota\left(\llbracket C \rrbracket \otimes w_{1}\right) \quad \text { and } \quad \iota(\llbracket C \rrbracket) \circ w_{1}=w \circ w_{2} \tag{50}
\end{equation*}
$$

First, we find a superset of the precondition $\llbracket \Gamma \rrbracket(w) * \iota^{-1}(w)(e m p) * r$ in the assumption above. Specifically, we replace the first two $*$-conjuncts in the precondition by supersets as follows:

$$
\begin{aligned}
\llbracket \Gamma \rrbracket(w) & \subseteq \llbracket \Gamma \rrbracket\left(w \circ w_{2}\right) & & \left(\text { by monotonicity of } \llbracket \Gamma \rrbracket \text { and } w_{2} \in W\right) \\
& =\llbracket \Gamma \rrbracket\left(\iota(\llbracket C \rrbracket) \circ w_{1}\right) & & \left(\text { since } \iota(\llbracket C \rrbracket) \circ w_{1}=w \circ w_{2}\right) \\
& =\llbracket \Gamma \otimes C \rrbracket\left(w_{1}\right) & & (\text { by definition of } \otimes) . \\
\iota^{-1}(w)(e m p) & \subseteq \iota^{-1}(w)\left(e m p \circ w_{2}\right) & & \left(\text { by monotonicity of } \iota^{-1}(w) \text { and } w_{2} \in W\right) \\
& =\iota^{-1}(w)\left(w_{2} \circ e m p\right) & & (\text { since emp is the unit) } \\
& =\left(\iota^{-1}(w) \otimes w_{2}\right)(e m p) & & (\text { by definition of } \otimes) \\
& =\iota^{-1}\left(w_{1}\right)(e m p) & & \left(\text { since } w_{1}=\iota\left(\iota^{-1}(w) \otimes w_{2}\right)\right)
\end{aligned}
$$

Thus, we have that

$$
\begin{equation*}
(k,(\rho, h)) \in \llbracket \Gamma \rrbracket(w) * \iota^{-1}(w)(e m p) * r \subseteq \llbracket \Gamma \otimes C \rrbracket\left(w_{1}\right) * \iota^{-1}\left(w_{1}\right)(e m p) * r \tag{51}
\end{equation*}
$$

By the assumed validity of the judgement $\Gamma \otimes C \Vdash t: \chi \otimes C * C$, (51) entails

$$
\begin{equation*}
(k,(\rho(t), h)) \in \mathcal{E}(\llbracket \chi \otimes C * C \rrbracket * r)\left(w_{1}\right) . \tag{52}
\end{equation*}
$$

We need to show that $(k,(\rho(t), h)) \in \mathcal{E}(\llbracket \chi \rrbracket * r)(w)$, so assume $(\rho(t) \mid h) \longmapsto \longmapsto^{j}$ ($t^{\prime} \mid h^{\prime}$) for some $j \leq k$ such that $\left(t^{\prime} \mid h^{\prime}\right)$ is irreducible. From (52) we then obtain

$$
\begin{equation*}
\left(k-j,\left(t^{\prime}, h^{\prime}\right)\right) \in \bigcup_{w^{\prime}} \llbracket \chi \otimes C * C \rrbracket\left(w_{1} \circ w^{\prime}\right) * \iota^{-1}\left(w_{1} \circ w^{\prime}\right)(e m p) * r \tag{53}
\end{equation*}
$$

Now note that we have

$$
\begin{aligned}
\llbracket \chi \otimes & C * C \rrbracket\left(w_{1} \circ w^{\prime}\right) * \iota^{-1}\left(w_{1} \circ w^{\prime}\right)(e m p) \\
& =\llbracket \chi \rrbracket\left(\iota(\llbracket C \rrbracket) \circ w_{1} \circ w^{\prime}\right) * \llbracket C \rrbracket\left(w_{1} \circ w^{\prime}\right) * \iota^{-1}\left(w_{1} \circ w^{\prime}\right)(\mathrm{emp}) \\
& =\llbracket \chi \rrbracket\left(\iota(\llbracket C \rrbracket) \circ w_{1} \circ w^{\prime}\right) * \iota^{-1}\left(\iota(\llbracket C \rrbracket) \circ w_{1} \circ w^{\prime}\right)(\mathrm{emp}) \\
& =\llbracket \chi \rrbracket\left(w \circ w^{\prime \prime}\right) * \iota^{-1}\left(w \circ w^{\prime \prime}\right)(e m p)
\end{aligned}
$$

for $w^{\prime \prime} \stackrel{\text { def }}{=} w_{2} \circ w^{\prime}$, since $w \circ w_{2}=\iota(\llbracket C \rrbracket) \circ w_{1}$. Thus, (53) entails

$$
\left(k-j,\left(t^{\prime}, h^{\prime}\right)\right) \in \bigcup_{w^{\prime \prime}} \llbracket \chi \rrbracket\left(w \circ w^{\prime \prime}\right) * \iota^{-1}\left(w \circ w^{\prime \prime}\right)(e m p) * r,
$$

and we are done.

C Generalized Frame and Anti-frame Rules

In this section we consider the extension of the previous model to the generalized frame and anti-frame rules of Pottier's [14]. We begin by solving the equation

$$
\begin{equation*}
X \cong \sum_{\alpha \in \mathcal{K}^{*}} X_{\alpha}, \quad X_{\kappa_{1}, \ldots, \kappa_{n}}=\left(\kappa_{1} \times \cdots \times \kappa_{n}\right) \rightarrow\left(\frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(\text { Heap })\right) \tag{54}
\end{equation*}
$$

with isomorphism $\iota: \sum_{\alpha \in \mathcal{K}^{*}} X_{\alpha} \rightarrow X$ in $C B U l t_{n e}$, where each $\kappa \in \mathcal{K}$ is equipped with the discrete metric. Next, we define the (recursive) composition operation ० : $X \times X \rightarrow X$ as follows.

Lemma 32. There exists a non-expansive operation $\circ: X \times X \rightarrow X$ satisfying $x_{1} \circ x_{2}=\iota\left(\left\langle\alpha_{1} \alpha_{2}, p\right\rangle\right)$, where $\left\langle\alpha_{i}, p_{i}\right\rangle=\iota^{-1}\left(x_{i}\right)$ for $i=1,2$, and where $p \in X_{\alpha_{1} \alpha_{2}}$ is defined by

$$
p\left(i_{1} i_{2}\right)(x)=p_{1}\left(i_{1}\right)\left(x_{2} \circ x\right) * p_{2}\left(i_{2}\right)(x) .
$$

for all $i_{1} \in \alpha_{1}, i_{2} \in \alpha_{2}$.
Proof (sketch). The operation is obtained as the (unique) fixed point of a contractive functional F on the metric space $X^{X \times X}$, by the Banach fixed point theorem. It maps an operation $\bullet \in X^{X \times X}$ and x_{1}, x_{2} (with $\left\langle\alpha_{i}, p_{i}\right\rangle=\iota^{-1}\left(x_{i}\right)$ for $i=1,2)$ to $z \in X$, given by $z=\iota\left(\left\langle\alpha_{1} \alpha_{2}, p\right\rangle\right)$,

$$
p\left(i_{1} i_{2}\right)(x)=p_{1}\left(i_{1}\right)\left(x_{2} \bullet x\right) * p_{2}\left(i_{2}\right)(x) .
$$

for all $i_{1} \in \alpha_{1}, i_{2} \in \alpha_{2}$. It is straightforward to check that $F(\bullet)$ is non-expansive (i.e., it is in $X^{X \times X}$), and that F is contractive (i.e, that $\bullet_{1} \stackrel{n}{=} \bullet_{2}$ implies $F\left(\bullet_{1}\right) \stackrel{n+1}{=}$ $F\left(\bullet_{2}\right)$).

Lemma 33. ○ is associative, and has a unit given by emp $=\iota\left(\left\langle\varepsilon, \lambda_{-}, . . I\right\rangle\right)$.

C. 1 Equivalence relation \sim on recursive worlds

We consider a (partial) equivalence relation \sim on X as follows. Given $x, y \in X$ such that $\iota^{-1}(x)=\langle\alpha, p\rangle$ and $\iota^{-1}(y)=\langle\beta, q\rangle$, then $x \sim y$ holds if and only if

- there exists $n \in \mathbb{N}$ and a permutation π of $1, \ldots, n$ such that $\alpha=\alpha_{1} \ldots \alpha_{n}$ and $\beta=\alpha_{\pi(1)} \ldots \alpha_{\pi(n)}$; and
- for all $i_{1} \in \alpha_{1}, \ldots, i_{n} \in \alpha_{n}$ and $z \sim z^{\prime}, p\left(i_{1} \ldots i_{n}\right)(z)=q\left(i_{\pi(1)} \ldots i_{\pi(n)}\right)\left(z^{\prime}\right)$.

Note that this relation is recursive. Formally, it is defined as the fixed point of a contractive function $\Psi: \mathcal{R}(X \times X) \rightarrow \mathcal{R}(X \times X)$ on the non-empty and closed subsets of $X \times X$:

Definition 34. Let $\Psi: \mathcal{R}(X \times X) \rightarrow \mathcal{R}(X \times X)$ be defined by $(x, y) \in \Psi(R)$ if and only if

- there exists $n \in \mathbb{N}$ and a permutation π of $1, \ldots, n$ such that $\alpha=\alpha_{1} \ldots \alpha_{n}$ and $\beta=\alpha_{\pi(1)} \ldots \alpha_{\pi(n)}$; and
- for all $i_{1} \in \alpha_{1}, \ldots, i_{n} \in \alpha_{n}$ and all $z, z^{\prime} \in X$, if $\left(z, z^{\prime}\right) \in R$ then $p\left(i_{1} \ldots i_{n}\right)(z)=$ $q\left(i_{\pi(1)} \ldots i_{\pi(n)}\right)\left(z^{\prime}\right)$.
Since $(e m p, e m p) \in \Psi(R)$, and if $\left(x_{k}, y_{k}\right)_{k}$ is a Cauchy chain in $\Psi(R)$ then the limit $\left(\lim x_{k}, \lim y_{k}\right)$ is also in $\Psi(R)$ as it is given pointwise:

$$
\begin{aligned}
\left(\lim _{k} p_{k}\right)\left(i_{1} \ldots i_{n}\right)(z) & =\lim _{k} p_{k}\left(i_{1} \ldots i_{n}\right)(z) \\
& =\lim _{k} q_{k}\left(i_{\pi(1)} \ldots i_{\pi(n)}\right)\left(z^{\prime}\right)=\left(\lim _{k} q_{k}\right)\left(i_{\pi(1)} \ldots i_{\pi(n)}\right)\left(z^{\prime}\right)
\end{aligned}
$$

Thus, we indeed have $\Psi(R) \in \mathcal{R}(X \times X)$. Moreover, Ψ is contractive, i.e., $R \stackrel{n}{=} S$ in $\mathcal{R}(X \times X)$ implies $\Psi(R) \stackrel{n+1}{=} \Psi(S)$; the proof of this fact is similar to proof of Lemma 12.

As a consequence, we can define $\sim \subseteq X \times X$ as the unique fixed point of Ψ by the Banach fixed point theorem.

Lemma 35. \sim is a partial equivalence relation on X :
$-x \sim y$ implies $y \sim x$;
$-x \sim y$ and $y \sim z$ implies $x \sim z$.
Proof. Since $\left(\sim_{[n]}\right)_{n}$ is a Cauchy chain in $\mathcal{R}(X \times X)$ with limit \sim given as the intersection of the $\sim_{[n]}$, part 1 follows from the claim:

$$
\forall n x y . x \sim y \Rightarrow(y, x) \in \sim_{[n]}
$$

which is proved by induction on n.
The case $n=0$ is immediate since $\sim_{[0]}=X \times X$. For the case $n>0$ let $x \sim y$. For simplicity, we assume $x=\iota\left\langle\alpha_{1} \alpha_{2}, p\right\rangle$ and $y=\iota\left\langle\alpha_{2} \alpha_{1}, q\right\rangle$. To prove $(y, x) \in \sim_{[n]}$ it suffices to show that $y^{\prime} \sim x^{\prime}$ holds for $y^{\prime}=\iota\left\langle\alpha_{2} \alpha_{1}, q^{\prime}\right\rangle$ and $x=$ $\iota\left\langle\alpha_{1} \alpha_{2}, p^{\prime}\right\rangle$ with $q^{\prime}\left(i_{2} i_{1}\right)(z)=q\left(i_{2} i_{1}\right)(z)_{[n]}$ and $p^{\prime}\left(i_{1} i_{2}\right)(z)=p\left(i_{1} i_{2}\right)(z)_{[n]}$, since $(y, x) \stackrel{n}{=}\left(y^{\prime}, x^{\prime}\right)$. To this end, let $i_{2} \in \alpha_{2}, i_{1} \in \alpha_{1}$, and suppose that $z \sim z^{\prime}$; we must prove $q^{\prime}\left(i_{2} i_{1}\right)(z)=p^{\prime}\left(i_{1} i_{2}\right)\left(z^{\prime}\right)$. By induction hypothesis, $\left(z^{\prime}, z\right) \in \sim_{[n-1]}$, i.e., there exists $u^{\prime} \sim u$ with $u^{\prime} \stackrel{n-1}{=} z^{\prime}$ and $u \stackrel{n-1}{=} z$ in X. Note that this means $u^{\prime} \stackrel{n}{=} z^{\prime}$ and $u \stackrel{n}{=} z$ holds in $\frac{1}{2} \cdot X$. Thus:

$$
q\left(i_{2} i_{1}\right)(z) \stackrel{n}{=} q\left(i_{2} i_{1}\right)(u)=p\left(i_{1} i_{2}\right)\left(u^{\prime}\right) \stackrel{n}{=} p\left(i_{1} i_{2}\right)\left(z^{\prime}\right)
$$

by the non-expansiveness of p, q, and by the assumption $x \sim y$. It follows that

$$
q^{\prime}\left(i_{2} i_{1}\right)(z)=q\left(i_{2} i_{1}\right)(z)_{[n]}=p\left(i_{1} i_{2}\right)\left(u^{\prime}\right)_{[n]}=p^{\prime}\left(i_{1} i_{2}\right)\left(z^{\prime}\right)
$$

i.e., we have shown $y^{\prime} \sim x^{\prime}$.

Part 2 follows from a similar argument, proving that for all $n, x \sim y$ and $y \sim z$ implies $(x, z) \in \sim_{[n]}$.

Lemma 36. Composition respects \sim, so if $x \sim x^{\prime}$ and $y \sim y^{\prime}$ then $x \circ y \sim x^{\prime} \circ y^{\prime}$.
Proof. Similar to the proof of Lemma 4: We prove that for all $n \in \mathbb{N}$,

$$
x \sim x^{\prime}, y \sim y^{\prime} \Rightarrow\left(x \circ y, x^{\prime} \circ y^{\prime}\right) \in \sim_{[n]}
$$

by induction on n, and then use that \sim is the intersection of all the $\sim_{[n]}$.

C. 2 Hereditarily monotonic recursive worlds

Next, we define the hereditarily monotonic worlds. We make sure that these worlds w respect \sim (which means that they are self-related, $w \sim w$): we aim for a set $W \subseteq X$ such that $w \in W$ for $\iota^{-1}(w)=\langle\alpha, p\rangle$ holds iff

$$
\text { (1) } w \sim w \text { and }(2) \forall i \in \alpha, w_{1}, w_{2} \in W \cdot p(i)\left(w_{1}\right) \subseteq p(i)\left(w_{1} \circ w_{2}\right)
$$

The set W is again defined as fixed point of a contractive function Φ, on the closed and non-empty subsets of X : Consider $\Phi: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$, with $w \in \Phi(R)$ if and only if
$-w \sim w$; and

- whenever $w=\iota\langle\alpha, p\rangle, i \in \alpha, w_{1}, w_{2} \in R$ then $p(i)\left(w_{1}\right) \subseteq p(i)\left(w_{1} \circ w_{2}\right)$.

Lemma 37. Φ restricts to a contractive function on $\mathcal{R}(X)$.
Thus, we can define the hereditarily monotonic functions $W=f i x(\Phi)=\Phi(W)$ by the Banach fixed point theorem.
Proof (sketch). The proof is along the lines of Lemma 12 in the case of the nonparameterized worlds.

Lemma 38. If $w_{1}, w_{2} \in W$ then $w_{1} \circ w_{2} \in W$.
Proof (sketch). Similar to the proof of Lemma 4: We prove that for all $n \in \mathbb{N}$,

$$
x, y \in W \Rightarrow x \circ y \in W_{[n]}
$$

by induction on n. Lemma 36 is used to show the additional requirement that the composition of $x, y \in W$ is self-related, $x \circ y \sim x \circ y$.

We can check that the hereditarily monotonic worlds are closed under \sim.
Lemma 39. Suppose $w \sim w^{\prime}$ and $w \in W$. Then $w^{\prime} \in W$.
Proof. We prove that $w^{\prime} \in \Phi(W)=W$. By symmetry and transitivity of \sim we obtain $w^{\prime} \sim w^{\prime}$ from $w \sim w^{\prime}$. Next, assume for simplicity that $\iota^{-1}(w)=\left\langle\alpha_{1} \alpha_{2}, p\right\rangle$ and $\iota^{-1}\left(w^{\prime}\right)=\left\langle\alpha_{2} \alpha_{1}, p^{\prime}\right\rangle$. Let $i_{2} \in \alpha_{2}, i_{1} \in \alpha_{1}$, and $w_{1}, w_{2} \in W$. In particular, $w_{1} \sim w_{1}$ and $w_{2} \sim w_{2}$. Then $w \in W$ gives

$$
p^{\prime}\left(i_{2} i_{1}\right)\left(w_{1}\right)=p\left(i_{1} i_{2}\right)\left(w_{1}\right) \subseteq p\left(i_{1} i_{2}\right)\left(w_{1} \circ w_{2}\right)=p^{\prime}\left(i_{2} i_{1}\right)\left(w_{1} \circ w_{2}\right)
$$

where the last equality holds since $w_{1} \circ w_{2} \sim w_{1} \circ w_{2}$, by $w_{1} \sim w_{1}, w_{2} \sim w_{2}$, and Lemma 36.

C. 3 Semantic domains

The semantic domains for the capabilities and types, with respect to the generalized worlds, now consist of the world-dependent functions that are both monotonic (with respect to the hereditarily monotonic worlds) and respect \sim. More precisely, for a preordered set A we define $\frac{1}{2} \cdot W \rightarrow_{\operatorname{mon}} \operatorname{UPred}(A)$ to consist of all those $p: \frac{1}{2} \cdot X \rightarrow \operatorname{UPred}(A)$ where

$$
\begin{aligned}
& -\forall x, x^{\prime} \in X . x \sim x^{\prime} \Rightarrow p(x)=p\left(x^{\prime}\right) \\
& -\forall w_{1}, w_{2} \in W \cdot p\left(w_{1}\right) \subseteq p\left(w_{1} \circ w_{2}\right)
\end{aligned}
$$

Then we set

$$
\begin{aligned}
C a p & =\frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(\text { Heap }) \\
V T & =\frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(\text { Val }) \\
M T & =\frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(\text { Val } \times \text { Heap }),
\end{aligned}
$$

Note that $p \in \kappa \rightarrow C a p$ if and only if $\iota(\langle\kappa, p\rangle) \in W$. Also note that, by definition of the metric on $X, x \stackrel{n}{=} x^{\prime}$ for $n>0$ implies that for $\langle\alpha, p\rangle$ and $\left\langle\alpha^{\prime}, p^{\prime}\right\rangle$ we have $\alpha=\alpha^{\prime}$ and $p i \stackrel{n}{=} p^{\prime} i$ for all $i \in \alpha$.

C. 4 Extension to expressions

We define the following extension of memory types from values to expressions.
Definition 40 (Expression typing). Let T in $\frac{1}{2} \cdot W \rightarrow_{\text {mon }}$ UPred (Val \times Heap). Let $x \in X$ and $\langle\alpha, p\rangle=\iota^{-1}(x)$. Let $i \in \alpha$. Then $\mathcal{E}(T, x, i) \subseteq E x p \times$ Heap is defined by $(k,(t, h)) \in \mathcal{E}(T, x, i)$ if and only if

$$
\begin{aligned}
& \forall j \leq k, t^{\prime}, h^{\prime} .(t \mid h) \longmapsto \longmapsto^{j}\left(t^{\prime} \mid h^{\prime}\right) \wedge\left(t^{\prime} \mid h^{\prime}\right) \text { irreducible } \\
& \quad \Rightarrow\left(k-j,\left(t^{\prime}, h^{\prime}\right)\right) \in \bigcup_{w \in W,\langle\alpha \beta, q\rangle=\iota^{-1}(x \circ w), i_{1} \geq i, i_{2} \in \beta} T(x \circ w) * q\left(i_{1} i_{2}\right)(e m p) .
\end{aligned}
$$

Lemma 41. With T, x, i as above, $\mathcal{E}(T, x, i)$ is a uniform subset of $\operatorname{Exp} \times H e a p$ (with respect to the discrete order on Exp \times Heap), and non-expansive as a function in x. Moreover, if $x^{\prime} \sim x$ and i^{\prime} is a corresponding reordering of the parameters i, then $\mathcal{E}\left(T, x^{\prime}, i^{\prime}\right)=\mathcal{E}(T, x, i)$.

Proof. Uniformity follows directly from the definition. If $x \stackrel{n}{=} x^{\prime}$ then $x \circ w \stackrel{n}{=}$ $x^{\prime} \circ w$ by the non-expansiveness of \circ. Using the non-expansiveness of T, the non-expansiveness of $\mathcal{E}(T, \cdot, \cdot)$ then follows.

For the last part, observe that $x \sim x^{\prime}$ implies $x \circ w \sim x^{\prime} \circ w$, and thus $T(x \circ w)=T\left(x^{\prime} \circ w\right)$ since T is in $\frac{1}{2} \cdot W \rightarrow_{\operatorname{mon}} \operatorname{UPred}(\operatorname{Val} \times$ Heap $)$. Similarly, for all parameters $i_{1} \geq i$ there exists a corresponding reordering $i_{1}^{\prime} \geq i^{\prime}$, and then $\iota^{-1}\left(x^{\prime} \circ w\right)\left(i_{1}^{\prime} i_{2}\right)(e m p)=\iota^{-1}(x \circ w)\left(i_{1} i_{2}\right)(e m p)$ since emp \sim emp.

C. 5 Closure of VT under arrow types

The definition of function types changes as follows: given $x \in X,(k$, fun $f(y)=t) \in$ $\left(T_{1} \rightarrow T_{2}\right)(x)$ if and only if

$$
\begin{aligned}
& \forall j<k . \forall w \in W \text { where } \iota^{-1}(x \circ w)=\langle\alpha, p\rangle . \forall r \in \operatorname{UPred}(\text { Heap }) . \forall i \in \alpha . \\
& \forall(j,(v, h)) \in T_{1}(x \circ w) * p(i)(e m p) * r . \\
& \quad(j, t[f:=\text { fun } f(y)=t, y:=v], h)) \in \mathcal{E}\left(T_{2} * r, x \circ w, i\right),
\end{aligned}
$$

using the above extension of T_{2} to expressions.
Lemma 42. For $T_{1}, T_{2} \in M T, T_{1} \rightarrow T_{2}$ is non-expansive, and $\left(T_{1} \rightarrow T_{2}\right)(x)$ is uniform for all $x \in X$. Moreover, $T_{1} \rightarrow T_{2} \in V T$, and the assignment of $T_{1} \rightarrow T_{2}$ to T_{1}, T_{2} is contractive.

Proof. The non-expansiveness follows from Lemma 41 (and analogous reasoning for the function argument from T_{1}). The uniformity is ensured by the explicit quantification over $j<k$ in the definition of $\left(T_{1} \rightarrow T_{2}\right)(x)$.
$T_{1} \rightarrow T_{2}$ is respects \sim, since the parameters are all universally quantified. More precisely, let $x \sim x^{\prime}$. Then $x \circ w \sim x^{\prime} \circ w$ by Lemma 36. Assume that $\iota^{-1}(x \circ w)=\left\langle\alpha_{1} \alpha_{2}, p\right\rangle$ and $\iota^{-1}\left(x^{\prime} \circ w\right)=\left\langle\alpha_{2} \alpha_{1}, p^{\prime}\right\rangle$. Then for all $i_{1} i_{2} \in \alpha_{1} \alpha_{2}$ we have $p\left(i_{1} i_{2}\right)(e m p)=p^{\prime}\left(i_{2} i_{1}\right)(e m p)$ since emp $\sim e m p$, and also $T_{1}(x \circ w)=$ $T_{1}\left(x^{\prime} \circ w\right)$ since $T_{1} \in M T$. Further, $\mathcal{E}\left(T_{2} * r, x \circ w, i_{1} i_{2}\right)=\mathcal{E}\left(T_{2} * r, x^{\prime} \circ w, i_{2} i_{1}\right)$ by Lemma 41. Also, the quantification over worlds $w \in W$, together with the closure of W under \circ, ensures that $T_{1} \rightarrow T_{2}$ satisfies the monotonicity condition $\left(T_{1} \rightarrow T_{2}\right)\left(w_{1}\right) \subseteq\left(T_{1} \rightarrow T_{2}\right)\left(w_{1} \circ w_{2}\right)$, and hence $T_{1} \rightarrow T_{2}$ is in $V T$.

Finally, the contractiveness of $(\cdot \rightarrow \cdot)$ follows since the k-th level of $\left(T_{1} \rightarrow T_{2}\right)$ is determined by considering both $T_{1}(x \circ w)$ and $\mathcal{E}\left(T_{2} * r, x \circ w, i\right)$ only up to level j strictly smaller than k.

C. 6 Distribution of \otimes over \rightarrow

The following lemma yields the key property to validate the syntactic distribution axiom for the generalized invariants.

Lemma 43. Let $T_{1}, T_{2} \in M T$, and let $w \in W$ with $\langle\alpha, p\rangle=\iota^{-1}(w)$. Then

$$
\left.\left(T_{1} \rightarrow T_{2}\right) \otimes w=\forall_{i \in \alpha}\left(\left(T_{1} \otimes w\right) * p i\right) \rightarrow \exists_{i^{\prime} \geq i}\left(\left(T_{2} \otimes w\right) * p i^{\prime}\right)\right)
$$

where \forall and \exists mean the pointwise intersection and union of world-indexed uniform predicates.

Proof. The proof is analogous to the one of Lemma 25, taking some care of the indices i and i^{\prime}. Let $x \in X$ and

$$
(k,(\text { fun } f(y)=t)) \in\left(\left(T_{1} \rightarrow T_{2}\right) \otimes w\right)(x)=\left(T_{1} \rightarrow T_{2}\right)(w \circ x) .
$$

We must prove that $(k,($ fun $f(y)=t)) \in \forall_{i}\left(T_{1} \otimes w * p i\right) \rightarrow \exists_{i^{\prime} \geq i}\left(T_{2} \otimes w * p i^{\prime}\right)$. To this end, fix $i \in \alpha$, let $j<k$, let $w_{1} \in W$ (where $\left.\iota^{-1}\left(x \circ w_{1}\right)=\left\langle\alpha_{1}, p_{1}\right\rangle\right)$, let $i_{1} \in \alpha_{1}$, let $r \in U P r e d($ Heap $)$, and suppose

$$
\begin{aligned}
(j,(v, h)) & \in\left(T_{1} \otimes w * p i\right)\left(x \circ w_{1}\right) * \iota^{-1}\left(x \circ w_{1}\right)\left(i_{1}\right)(e m p) * r \\
& =T_{1}\left(w \circ x \circ w_{1}\right) * p(i)\left(x \circ w_{1}\right) * \iota^{-1}\left(x \circ w_{1}\right)\left(i_{1}\right)(e m p) * r \\
& =T_{1}\left(w \circ x \circ w_{1}\right) * \iota^{-1}\left(w \circ x \circ w_{1}\right)\left(i i_{1}\right)(e m p) * r .
\end{aligned}
$$

Then, by the assumption, $(j,(t[f:=$ fun $f(y)=t, y:=v], h)) \in \mathcal{E}\left(T_{2} * r, w \circ x \circ w_{1}, i i_{1}\right)$. Unfolding the definition of $\mathcal{E}, \mathcal{E}\left(T_{2} * r, w \circ x \circ w_{1}, i i_{1}\right)$ is seen to be equivalent to $\mathcal{E}\left(\exists_{i^{\prime} \geq i} T_{2} \otimes w * p i^{\prime} * r, x \circ w_{1}, i_{1}\right)$, because we have

$$
\begin{aligned}
& \bigcup_{w_{2}, i_{2}, i^{\prime} i_{1}^{\prime} \geq i i_{1}} \\
& T_{2}\left(w \circ x \circ w_{1} \circ w_{2}\right) * q\left(i^{\prime} i_{1}^{\prime} i_{2}\right)(\mathrm{emp})(\mathrm{emp}) * r \\
& =\bigcup_{w_{2}, i_{2}, i^{\prime} i_{1}^{\prime} \geq i i_{1}}\left(T_{2} \otimes w * p\left(i^{\prime}\right)\right)\left(x \circ w_{1} \circ w_{2}\right) * q_{1}\left(i_{1}^{\prime} i_{2}\right)(\mathrm{emp}) * r \\
& =\bigcup_{w_{2}, i_{2}, i_{1}^{\prime} \geq i_{1}}\left(\bigcup_{i^{\prime} \geq i}\left(T_{2} \otimes w * p\left(i^{\prime}\right)\right)\left(x \circ w_{1} \circ w_{2}\right)\right) * q_{1}\left(i_{1}^{\prime} i_{2}\right)(\mathrm{emp}) * r \\
& =\bigcup_{w_{2}, i_{2}, i_{1}^{\prime} \geq i_{1}}\left(\exists_{i^{\prime} \geq i}\left(T_{2} \otimes w * p\left(i^{\prime}\right)\right)\right)\left(x \circ w_{1} \circ w_{2}\right) * q_{1}\left(i_{1}^{\prime} i_{2}\right)(\mathrm{emp}) * r
\end{aligned}
$$

for $\iota^{-1}\left(x \circ w_{1} \circ w_{2}\right)=\left\langle\alpha_{1} \beta, q_{1}\right\rangle$ and $\iota^{-1}\left(w \circ x \circ w_{1} \circ w_{2}\right)=\left\langle\alpha \alpha_{1} \beta, q\right\rangle$.
The other direction is similar.

C. 7 Semantics of typing judgements

The semantics of value judgement looks as before, i.e., it establishes truth with respect to all worlds w, all environments η and all $k \in \mathbb{N}$:

$$
\vDash(\Delta \vdash v: \tau) \stackrel{\text { def }}{\Longleftrightarrow} \forall \eta . \forall w \in W . \forall k \in \mathbb{N} . \forall(k, \rho) \in \llbracket \Delta \rrbracket_{\eta} w .(k, \rho(v)) \in \llbracket \tau \rrbracket_{\eta} w .
$$

The judgement for expressions again mirrors the interpretation of the arrow case for value types, in that there now is also a universal quantification over all possible instances of the invariants represented by the world $w \in W$:

$$
\begin{aligned}
\vDash(\Gamma \Vdash t: \chi) \stackrel{\text { def }}{\Longleftrightarrow} \forall \eta . \forall w \in W \text { where } w & =\langle\alpha, p\rangle . \forall k \in \mathbb{N} . \\
\forall i \in \alpha . \forall r \in \operatorname{UPred}(\operatorname{Heap}) . \forall(k,(\rho, h)) & \in \llbracket \Gamma \rrbracket_{\eta} w * p(i)(e m p) * r . \\
& (k,(\rho(t), h)) \in \mathcal{E}\left(\llbracket \chi \rrbracket_{\eta} * r, w, i\right) .
\end{aligned}
$$

C. 8 Generalized frame rule

Lemma 44. Suppose $\models(\Gamma \Vdash t: \chi)$. Assume that I has kind $\kappa \rightarrow$ CAP (and thus $\llbracket I \rrbracket: \kappa \rightarrow$ Cap $)$, and that $i \in \kappa$. Then $\models(\Gamma \otimes I * I i \Vdash t: \exists j \geq i$. $((\chi \otimes I) * I j))$.

Proof. We prove $\models(\Gamma \otimes I * I i \Vdash t: \exists j \geq i$. $((\chi \otimes I) * I j))$. Let $w \in W$ with $\langle\alpha, p\rangle$, let $i_{1} \in \alpha$, let $k \in \mathbb{N}$, let $r \in \operatorname{UPred}(H e a p)$ and let

$$
(k,(\rho, h)) \in \llbracket \Gamma \otimes I * I i \rrbracket(w) * p\left(i_{1}\right)(e m p) * r
$$

Since $\llbracket I \rrbracket: \kappa \rightarrow C a p$ we know that $w^{\prime} \stackrel{\text { def }}{=} \iota\langle\kappa, \llbracket I \rrbracket\rangle \circ w$ is in W. Moreover, $w^{\prime}=$ $\iota\left\langle\kappa \alpha, p^{\prime}\right\rangle$ where $p^{\prime}\left(i i_{1}\right)(x)=\llbracket I \rrbracket(i)(w \circ x) * p\left(i_{1}\right)(x)$, and thus

$$
\begin{aligned}
& \llbracket \Gamma \otimes I * I i \rrbracket(w) * p\left(i_{1}\right)(e m p) * r \\
& \quad=\llbracket \Gamma \rrbracket(\iota\langle\kappa, \llbracket I \rrbracket\rangle \circ w) * \llbracket I \rrbracket(i)(w) * p\left(i_{1}\right)(e m p) * r \\
& \quad=\llbracket \Gamma \rrbracket\left(w^{\prime}\right) * p^{\prime}\left(i i_{1}\right)(e m p) * r .
\end{aligned}
$$

Since $w^{\prime} \in W$ we can instantiate $\models(\Gamma \Vdash t: \chi)$ to obtain $(k,(\rho(t), h)) \in$ $\mathcal{E}\left(\llbracket \chi \rrbracket * r, w^{\prime}, i i_{1}\right)$. As in the proof of Lemma 43 , the latter is shown to be equivalent to the statement
$(k,(\rho(t), h)) \in \mathcal{E}\left(\exists_{j \geq i} \llbracket \chi \otimes I * I j \rrbracket * r, w, i_{1}\right)=\mathcal{E}\left(\llbracket \exists j \geq i .(\chi \otimes I) * I j \rrbracket * r, w, i_{1}\right)$ and this establishes $\models(\Gamma \otimes I * I i \Vdash t: \exists j \geq i .((\chi \otimes I) * I j))$.

C. 9 Generalized anti-frame rule

As before, the soundness proof of the anti-frame rule rests on the existence of commutative pairs. For the generalized invariants, the statement is a variant of the earlier Lemma 30, stating that "commutativity" is up to the relation \sim :

Lemma 45. Let $w_{0}, w_{1} \in W$ be families indexed over α_{0} and α_{1}, i.e., $\iota^{-1}\left(w_{0}\right)=$ $\left\langle\alpha_{0}, p_{0}\right\rangle$ and $\iota^{-1}\left(w_{1}\right)=\left\langle\alpha_{1}, p_{1}\right\rangle$. Then there exist $w_{0}^{\prime}, w_{1}^{\prime} \in W$ such that

$$
\begin{aligned}
& w_{0}^{\prime}=\iota\left\langle\alpha_{0}, \lambda i .\left(p_{0} i\right) \otimes w_{1}^{\prime}\right\rangle, \\
& w_{1}^{\prime}=\iota\left\langle\alpha_{1}, \lambda i .\left(p_{1} i\right) \otimes w_{0}^{\prime}\right\rangle, \quad \text { and } \\
& w_{0} \circ w_{1}^{\prime} \sim w_{1} \circ w_{0} .
\end{aligned}
$$

Proof. The existence of commutative pairs in the above sense is proved as in Lemma 30, modulo the indexing over α_{0} and α_{1}, respectively.

Lemma 46. Assume that I has kind $\kappa \rightarrow$ CAP, and suppose that we have \models $(\Gamma \otimes I \Vdash t:(\chi \otimes I) * \exists i$. Ii $)$. Then $\vDash(\Gamma \Vdash t: \chi)$.
Proof. We prove $\models(\Gamma \Vdash t: \chi)$. Let $w \in W$ with $\iota^{-1}(w)=\langle\alpha, p\rangle, i \in \alpha, k \in \mathbb{N}$, $r \in U P r e d(H e a p)$ and

$$
(k,(\rho, h)) \in \llbracket \Gamma \rrbracket(w) * p(i)(e m p) * r .
$$

We must prove $(k,(\rho(t), h)) \in \mathcal{E}(\llbracket \chi \rrbracket * r, w, i)$. By Lemma 45, there exist worlds w_{1}, w_{2} in W such that

$$
\begin{align*}
& w_{1}=\iota\left\langle\alpha, \lambda i .(p i) \otimes w_{2}\right\rangle, \\
& w_{2}=\iota\left\langle\kappa, \lambda i .(\llbracket I \rrbracket i) \otimes w_{1}\right\rangle, \quad \text { and } \tag{55}\\
& w \circ w_{2} \sim \iota\langle\kappa, \llbracket I \rrbracket\rangle \circ w_{1} .
\end{align*}
$$

As in Lemma 31 we now find a superset of the precondition $\llbracket \Gamma \rrbracket(w) * p(i)(e m p) * r$ in the assumption above. Specifically, we replace the first two $*$-conjuncts in the precondition by supersets as follows:

$$
\begin{aligned}
\llbracket \Gamma \rrbracket(w) & \subseteq \llbracket \Gamma \rrbracket\left(w \circ w_{2}\right) & & \text { (by monotonicity of } \left.\llbracket \Gamma \rrbracket \text { and } w_{2} \in W\right) \\
& =\llbracket \Gamma \rrbracket\left(\iota\langle\kappa, \llbracket I \rrbracket\rangle \circ w_{1}\right) & & \left(\text { since } \iota\langle\kappa, \llbracket I \rrbracket\rangle \circ w_{1} \sim w \circ w_{2}\right) \\
& =\llbracket \Gamma \otimes I \rrbracket\left(w_{1}\right) & & (\text { by definition of } \otimes) . \\
p(i)(e m p) & \subseteq p(i)\left(e m p \circ w_{2}\right) & & \text { (by monotonicity of } \left.p(i) \text { and } w_{2} \in W\right) \\
& =p(i)\left(w_{2} \circ e m p\right) & & \text { (since emp is the unit) } \\
& =\left((p(i)) \otimes w_{2}\right)(e m p) & & \text { (by definition of } \otimes) .
\end{aligned}
$$

(Note that we have used $\llbracket \Gamma \rrbracket: \frac{1}{2} \cdot W \rightarrow_{\text {mon }} \operatorname{UPred}(E n v \times H e a p)$ in the first equality above.) Thus, we have that

$$
\begin{equation*}
(k,(\rho, h)) \in \llbracket \Gamma \rrbracket(w) * p(i)(e m p) * r \subseteq \llbracket \Gamma \otimes I \rrbracket\left(w_{1}\right) *\left((p(i)) \otimes w_{2}\right)(\mathrm{emp}) * r \tag{56}
\end{equation*}
$$

By the assumed validity of the judgement $\Gamma \otimes I \Vdash t: \chi \otimes I * \exists i . I i,(56)$ entails

$$
\begin{equation*}
(k,(\rho(t), h)) \in \mathcal{E}\left(\llbracket \chi \otimes I * \exists i_{0} . I i_{0} \rrbracket * r, w_{1}, i\right) \tag{57}
\end{equation*}
$$

We need to show that $(k,(\rho(t), h)) \in \mathcal{E}(\llbracket \chi \rrbracket * r, w, i)$, so assume $(\rho(t) \mid h) \longmapsto \longmapsto^{j}$ ($t^{\prime} \mid h^{\prime}$) for some $j \leq k$ such that $\left(t^{\prime} \mid h^{\prime}\right)$ is irreducible. From (57) we then obtain

$$
\begin{equation*}
\left(k-j,\left(t^{\prime}, h^{\prime}\right)\right) \in \llbracket \chi \otimes I * \exists i_{0} . I i_{0} \rrbracket\left(w_{1} \circ w^{\prime}\right) * q\left(i_{1} i_{2}\right)(e m p) * r . \tag{58}
\end{equation*}
$$

for some $w^{\prime} \in W$, some $i_{1} \geq i$ and some $i_{2} \in \beta$, where $\iota^{-1}\left(w_{1} \circ w^{\prime}\right)=\langle\alpha \beta, q\rangle$. Let us write $s\left(i_{0} i_{1} i_{2}\right)(x) \stackrel{\text { def }}{=} \llbracket I \rrbracket\left(i_{0}\right)\left(w_{1} \circ w^{\prime} \circ x\right) * q\left(i_{1} i_{2}\right)(x)$, so that $\iota\langle\kappa \alpha \beta, s\rangle=$ $\iota\langle\kappa, \llbracket I \rrbracket\rangle \circ\left(w_{1} \circ w^{\prime}\right)$.

Now note that we have

$$
\begin{aligned}
& \llbracket \chi \otimes I * \exists i_{0} . I i_{0} \rrbracket\left(w_{1} \circ w^{\prime}\right) * q\left(i_{1} i_{2}\right)(e m p) \\
& \quad=\bigcup_{i_{0}} \llbracket \chi \rrbracket\left(\iota\langle\kappa, \llbracket I \rrbracket\rangle \circ w_{1} \circ w^{\prime}\right) * \llbracket I \rrbracket\left(i_{0}\right)\left(w_{1} \circ w^{\prime}\right) * q\left(i_{1} i_{2}\right)(\mathrm{emp}) \\
& \quad=\bigcup_{i_{0}} \llbracket \chi \rrbracket\left(\iota\langle\kappa, \llbracket I \rrbracket\rangle \circ w_{1} \circ w^{\prime}\right) * s\left(i_{0} i_{1} i_{2}\right)(\mathrm{emp})
\end{aligned}
$$

If we write $w^{\prime \prime} \stackrel{\text { def }}{=} w_{2} \circ w^{\prime}$ then, since $\iota\langle\kappa, \llbracket I \rrbracket\rangle \circ w_{1} \sim w \circ w_{2}$, we have

$$
\begin{equation*}
\iota\langle\kappa, \llbracket I \rrbracket\rangle \circ w_{1} \circ w^{\prime} \sim w \circ w^{\prime \prime} \tag{59}
\end{equation*}
$$

by Lemma 36, and thus

$$
\llbracket \chi \rrbracket\left(\iota\langle\kappa, \llbracket I \rrbracket\rangle \circ w_{1} \circ w^{\prime}\right)=\llbracket \chi \rrbracket\left(w \circ w^{\prime \prime}\right) .
$$

Moreover, for s^{\prime} such that $\iota^{-1}\left(w \circ w^{\prime \prime}\right)=\left\langle\alpha \kappa \beta, s^{\prime}\right\rangle$, (59) and emp \sim emp gives

$$
s\left(i_{0} i_{1} i_{2}\right)(e m p)=s^{\prime}\left(i_{1} i_{0} i_{2}\right)(e m p)
$$

Thus, (58) entails

$$
\left(k-j,\left(t^{\prime}, h^{\prime}\right)\right) \in \bigcup_{w^{\prime \prime}, i_{0} i_{2} \in \kappa \beta, i_{1}>i} \llbracket \chi \rrbracket\left(w \circ w^{\prime \prime}\right) * s^{\prime}\left(i_{1} i_{0} i_{2}\right)(e m p) * r,
$$

and we are done.

[^0]: * A preliminary version of this article has been presented at the 7 th Workshop on Fixed Points in Computer Science, FICS 2010.

